
Oracle Rdb™

SQL Reference Manual
Volume 2

Release 7.2.5.2 for HP OpenVMS Industry Standard 64 for Integrity Servers and
OpenVMS Alpha operating systems

April 2012

®

SQL Reference Manual, Volume 2

Oracle Rdb Release 7.2.5.2 for HP OpenVMS Industry Standard 64 for Integrity Servers
and OpenVMS Alpha operating systems

Copyright © 1987, 2012 Oracle Corporation. All rights reserved.

Primary Author: Rdb Engineering and Documentation group

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted
to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or
anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation
and technical data delivered to U.S. Government customers are "commercial computer
software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms
set forth in the applicable Government contract, and, to the extent applicable by the terms
of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information
management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle
CODASYL DBMS, Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are
registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on
content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

Send Us Your Comments . vii

Preface . ix

6 SQL Statements

ACCEPT Statement . 6–2
ALTER Statements . 6–7
ALTER CONSTRAINT Statement . 6–8
ALTER DATABASE Statement . 6–12
ALTER DOMAIN Statement . 6–88
ALTER FUNCTION Statement . 6–104
ALTER INDEX Statement . 6–111
ALTER MODULE Statement . 6–134
ALTER OUTLINE Statement . 6–141
ALTER PROCEDURE Statement . 6–147
ALTER PROFILE Statement . 6–153
ALTER ROLE Statement . 6–157
ALTER SEQUENCE Statement . 6–160
ALTER STORAGE MAP Statement . 6–169
ALTER SYNONYM Statement . 6–184
ALTER TABLE Statement . 6–186
ALTER TRIGGER Statement . 6–226
ALTER USER Statement . 6–229
ALTER VIEW Statement . 6–232
ATTACH Statement . 6–238
BEGIN DECLARE Statement . 6–249
CALL Statement for Simple Statements . 6–252
CALL Statement for Compound Statements . 6–255

iii

CASE (Searched) Control Statement . 6–259
CASE (Simple) Control Statement . 6–261
CLOSE Statement . 6–264
COMMENT ON Statement . 6–266
COMMIT Statement . 6–274
Compound Statement . 6–280
CONNECT Statement . 6–295
CREATE Statements . 6–307
CREATE CACHE Clause . 6–308
CREATE CATALOG Statement . 6–319
CREATE COLLATING SEQUENCE Statement . 6–323
CREATE DATABASE Statement . 6–328
CREATE DOMAIN Statement . 6–393
CREATE FUNCTION Statement . 6–406
CREATE INDEX Statement . 6–407
CREATE MODULE Statement . 6–433
CREATE OUTLINE Statement . 6–457
CREATE PROCEDURE Statement . 6–483
CREATE PROFILE Statement . 6–484
CREATE ROLE Statement . 6–489
CREATE ROUTINE Statement . 6–494
CREATE SCHEMA Statement . 6–514

Index

Tables

6–1 Updating Data Definitions While Users Are Attached to the
Database . 6–67

6–2 Updating Database-Wide Parameters While Users Are Attached to
the Database . 6–70

6–3 Constraint Attributes Syntax Permutations and Equivalents 6–195
6–4 ALTER and DROP Statements Causing or Not Causing Stored

Routine Invalidation . 6–441

iv

Send Us Your Comments

Oracle Rdb for OpenVMS
Oracle SQL Reference Manual, Release 7.2.5.2
Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most?

If you find any errors or have any other suggestions for improvement, please
indicate the document title, chapter, section, and page number (if available).
You can send comments to us in the following ways:

• Electronic mail:InfoRdb_US@oracle.com

• FAX — 603-897-3825 Attn: Oracle Rdb

• Postal service:
Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please give your name, address, telephone number,
and (optionally) electronic mail address.

If you have problems with the software, please contact your local Oracle
Support Services.

vii

Preface

This manual describes the syntax and semantics of statements and language
elements for the SQL (structured query language) interface to the Oracle Rdb
database software.

Intended Audience
To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the
OpenVMS operating system.

Operating System Information
You can find information about the versions of the operating system and
optional software that are compatible with this version of Oracle Rdb in the
Oracle Rdb Installation and Configuration Guide.

For information on the compatibility of other software products with this
version of Oracle Rdb, refer to the Oracle Rdb Release Notes.

Contact your Oracle representative if you have questions about the
compatibility of other software products with this version of Oracle Rdb.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support.
For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

ix

Structure
This manual is divided into five volumes. Volume 1 contains Chapter 1 through
Chapter 5 and an index. Volume 2 contains Chapter 6 and an index. Volume 3
contains Chapter 7 and an index. Volume 4 contains Chapter 8 and an index.
Volume 5 contains the appendixes and an index.

The index for each volume contains entries for the respective volume only and
does not contain index entries from the other volumes in the set.

The following table shows the contents of the chapters and appendixes in
Volumes 1, 2, 3, 4, and 5 of the Oracle Rdb SQL Reference Manual:

Chapter 1 Introduces SQL (structured query language) and briefly
describes SQL functions. This chapter also describes
conformance to the SQL database standard, how to read
syntax diagrams, executable and nonexecutable statements,
keywords and line terminators, and support for Multivendor
Integration Architecture.

Chapter 2 Describes the language and syntax elements common to
many SQL statements.

Chapter 3 Describes the syntax for the SQL module language and the
SQL module processor command line.

Chapter 4 Describes the syntax of the SQL precompiler command line.

Chapter 5 Describes SQL routines.

Chapter 6
Chapter 7
Chapter 8

Describe in detail the syntax and semantics of the SQL
statements. These chapters include descriptions of data
definition statements, data manipulation statements, and
interactive control commands.

Appendix A Describes the different types of errors encountered in SQL
and where they are documented.

Appendix B Describes the SQL standards to which Oracle Rdb conforms.

Appendix C Describes the SQL Communications Area, the message
vector, and the SQLSTATE error handling mechanism.

Appendix D Describes the SQL Descriptor Areas and how they are used
in dynamic SQL programs.

x

Appendix E Summarizes the logical names that SQL recognizes for
special purposes.

Appendix F Summarizes the obsolete SQL features of the current Oracle
Rdb version.

Appendix G Summarizes the SQL functions that have been added to
the Oracle Rdb SQL interface for compatibility with Oracle
Database SQL. This appendix also describes the SQL syntax
for performing an outer join between tables.

Appendix H Describes the Oracle Rdb system tables.

Appendix I Describes information tables that can be used with Oracle
Rdb.

Index Index for each volume.

Related Manuals
For more information on Oracle Rdb, see the other manuals in this
documentation set, especially the following:

• Oracle Rdb Guide to Database Design and Definition

• Oracle Rdb7 Guide to Database Performance and Tuning

• Oracle Rdb Introduction to SQL

• Oracle Rdb Guide to SQL Programming

Conventions
This manual uses icons to identify information that is specific to an operating
system or platform. Where material pertains to more than one platform or
operating system, combination icons or generic icons are used. For example:

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted.

The following conventions are also used in this manual:

xi

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

boldface
text

Boldface type in text indicates a new term.

< > Angle brackets enclose user-supplied names in syntax diagrams.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the command language prompt. This symbol
indicates that the command language interpreter is ready for input.

References to Products
The Oracle Rdb documentation set to which this manual belongs often refers to
the following Oracle Corporation products by their abbreviated names:

• In this manual, release 7.2 of Oracle Rdb software is often referred to as
Version 7.2 or V7.2.

• Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

• Oracle ODBC Driver for Rdb software is referred to as the ODBC driver.

• OpenVMS I64 refers to HP OpenVMS Industry Standard 64 for Integrity
Servers.

• OpenVMS means the OpenVMS I64 and OpenVMS Alpha operating
systems.

xii

6
SQL Statements

This chapter describes the syntax and semantics of statements in SQL. SQL
statements include data definition statements; data manipulation statements;
statements that control the environment and program flow; and statements
that give information.

See Chapter 2 in Volume 1 for detailed descriptions of the language and syntax
elements referred to by the syntax diagrams in this chapter.

Chapter 7 in Volume 3 describes the statements from CREATE SEQUENCE to
GRANT.

Chapter 8 in Volume 4 describes the statements from HELP to WHILE.

SQL Statements 6–1

ACCEPT Statement

ACCEPT Statement

Prompts the user for additional information. This information is stored in an
interactive SQL variable, which can subsequently be used by DML and some
SET statements.

Environment

You can use the ACCEPT statement in interactive SQL.

Format

ACCEPT <variable-ref>
DEFAULT <default-value>
HIDE
PROMPT <string-literal>
NOPROMPT
TIMEOUT <numeric-literal>
UPPER

variable-ref =

identifier
: : identifier

INDICATOR

Arguments

DEFAULT default-value
Provides a default value to be used if the user presses the Return key. The
default value must be a correctly formatted character string that can be
converted to the data type of the variable.

HIDE
Disables echo of the input text. The default is to echo all input characters.

PROMPT string-literal
Provides a prompt string that is displayed before accepting input.

NOPROMPT
Disables prompting with a string.

6–2 SQL Statements

ACCEPT Statement

TIMEOUT numeric-literal
If the user does not respond within this many seconds, then an error is
returned. Negative or zero values of the numeric-literal are ignored. The
default is to wait indefinitely.

UPPER
All lowercase characters are converted to uppercase before assignment to the
variable. The default is to leave lowercase characters unchanged.

variable-ref
An interactive SQL variable defined using the DECLARE Variable statement.

Usage Notes

• The variable must be declared using the DECLARE syntax in interactive
SQL. ACCEPT does not create this variable automatically. The leading
colon (:) required for most variables references is optional in the ACCEPT
command.

The variable reference may include an indicator variable that can be used
to detect NULL value assignments.

• When PROMPT is specified, the character string literal (up to a maximum
of 80 octets) is used to prompt the user for input.

When NOPROMPT is specified, then the user is not given a prompt string.

If neither PROMPT nor NOPROMPT is specified, SQL will create a prompt
containing the name of the variable. For instance:

SQL> ACCEPT :NAME;
Enter a value for NAME: Jeff

The prompt string does not appear in the output created by the SET
OUTPUT statement. Use the PRINT command to verify the input in such
cases.

• This statement is based upon the ACCEPT statement of Oracle SQL*Plus.
The following SQL*Plus clauses are not currently available in Oracle Rdb
SQL: NUMBER, CHAR, DATE, and FORMAT.

• If the user enters no data, but presses the Return key, then the DEFAULT
value is used in place of the response. If there was no DEFAULT specified,
then a zero length string value is used, which may result in a valid value
for numeric variables (zero) and string variables (spaces or the empty
string), but will result in errors for DATE, TIME, TIMESTAMP, and
INTERVAL variables.

SQL Statements 6–3

ACCEPT Statement

• If the user enters EXIT (Ctrl/Z), then either an error is raised, or if an
indicator variable is provided, then the value of the variable will be set to
-1 (indicating NULL). The value of the variable will be undefined.

SQL> ACCEPT :id INDICATOR :id_ind PROMPT ’Id? ’;
Id? <exit>

SQL> PRINT :id, :id_ind;
ID ID_IND
0 -1

• If a timeout occurs and an indicator variable is provided, then the
command succeeds and the indicator is set to -1 (indicating NULL).
The value of the variable will be undefined.

SQL> declare :row_out, :row_out_ind integer;
SQL> accept :row_out timeout 5;
Enter value for ROW_OUT:
%SQL-F-UNDEFVAR, Variable ROW_OUT is not defined
-SYSTEM-F-TIMEOUT, device timeout
SQL> accept :row_out indicator :row_out_ind timeout 5;
Enter value for ROW_OUT:
SQL> print :row_out indicator :row_out_ind;

ROW_OUT
NULL

• If incompatible or incorrectly formatted data is entered, then an error will
be issued and the contents of the variable will be unchanged.

SQL> DECLARE :age INTEGER;
SQL> ACCEPT :age;
Enter value for AGE: thirty
%RDB-E-ARITH_EXCEPT, truncation of a numeric value at runtime
-COSI-F-INPCONERR, input conversion error

• Values for DATE VMS, DATE ANSI, TIME, TIMESTAMP, and INTERVAL
data types must include all required punctuation.

SQL> DECLARE :end_time TIME(2);
SQL> ACCEPT :end_time;
Enter value for END_TIME: 10:30
%SQL-F-DATCONERR, Data conversion error for string ’10:30’
-COSI-F-IVTIME, invalid date or time

In this example, the required second and fractional seconds fields of the
value were omitted.

• ACCEPT reads from SYS$COMMAND, which often defaults to the same
input source as SYS$INPUT. However, it is possible to have SQL read
from a separate source. In this example, SQL reads the SQL statements

6–4 SQL Statements

ACCEPT Statement

from SUMMARY_REPORT.SQL and accepts the answers from the file
ANSWERS.DAT.

$ define/user sys$command answers.dat
$ sql$ @summary_report

When the input source is not an interactive device, the PROMPT clause is
ignored and the prompt does not appear in the output.

• Up to 20 previous inputs are available for command recall.

Examples

Example 1: Prompting Based on the PROMPT and NOPROMPT Clauses

SQL> DECLARE :x INTEGER;
SQL> DECLARE :y INTEGER;
SQL>
SQL> ACCEPT :x indicator :y PROMPT ’what value? ’;
what value? 10
SQL> PRINT :x, :y;

X Y
10 0

SQL>
SQL> ACCEPT :x INDICATOR :y NOPROMPT;
11
SQL> PRINT :x, :y;

X Y
11 0

SQL>
SQL> ACCEPT :x;
Enter value for X: 12
SQL> PRINT :x;

X
12

SQL>

Example 2: Using ACCEPT to Prompt for SET FLAGS String

This sequence would be included in a script.

SQL> DECLARE :debug_flags CHAR(20);
SQL> ACCEPT :debug_flags;
Enter value for DEBUG_FLAGS: trace
SQL> PRINT :debug_flags;
DEBUG_FLAGS
trace
SQL> SET FLAGS :debug_flags;
SQL> SHOW FLAGS

SQL Statements 6–5

ACCEPT Statement

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,TRACE,MAX_RECURSION(100)

6–6 SQL Statements

ALTER Statements

ALTER Statements

Modifies the database object.

Usage Notes

The following notes apply to all ALTER statements, except ALTER
DATABASE.

• You cannot execute an ALTER statement when any of the LIST, DEFAULT
or RDB$SYSTEM storage areas are set to read-only. You must first
set these storage areas to read/write. Note that in some databases
RDB$SYSTEM will also be the default and list storage area.

• The ALTER statement fails when both of the following circumstances are
true:

The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

The database was declared using the FILENAME argument.

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates is not being maintained

• You must execute the ALTER statement in a read/write transaction. If
you issue this statement when there is no active transaction, SQL starts
a transaction with characteristics specified in the most recent DECLARE
TRANSACTION statement.

SQL Statements 6–7

ALTER CONSTRAINT Statement

ALTER CONSTRAINT Statement

Alters a constraint.

Environment

You can use the ALTER CONSTRAINT statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER CONSTRAINT <constraint-name>

COMMENT IS ’<text-literal>’
/

constraint-attributes
RENAME TO <new-constraint-name>

constraint-attributes =

DEFERRABLE
INITIALLY IMMEDIATE

DEFERRED
NOT DEFERRABLE

INITIALLY IMMEDIATE
INITIALLY IMMEDIATE

DEFERRABLE
NOT DEFERRABLE

INITIALLY DEFERRED
DEFERRABLE

Arguments

COMMENT IS ’string’
Adds a comment about the constraint. SQL displays the text of the comment
when it executes a SHOW CONSTRAINTS statement. Enclose the comment in
single quotation marks (’) and separate multiple lines in a comment with a
slash mark (/).

6–8 SQL Statements

ALTER CONSTRAINT Statement

constraint-attributes
See the ALTER TABLE Statement.

constraint-name
The name of the table whose definition you want to change.

RENAME TO
Changes the name of the constraint being altered. See the RENAME
Statement for further discussion. If the new name is the name of a synonym
then an error will be raised.

The RENAME TO clause requires synonyms be enabled for this database.
Refer to the ALTER DATABASE Statement SYNONYMS ARE ENABLED
clause. Note that these synonyms may be deleted if they are no longer used by
database definitions or applications.

Usage Notes

• If a constraint attribute is changed it will only be effective for future
references to the table containing that constraint. That is, if a constraint is
already active then it will use the previously defined attributes.

• The constraint name can be prefixed with an alias name. For example,

SQL> alter constraint db1.ALL_UNIQUE
cont> deferrable initially deferred;

Example

This example shows how ALTER CONSTRAINT can be used to change the
constraint attributes and add a comment to a constraint.

SQL Statements 6–9

ALTER CONSTRAINT Statement

SQL> set dialect ’sql99’;
SQL> attach ’file db$:mf_personnel’;
SQL>
SQL> create table PERSON
cont> (last_name char(20)
cont> constraint MUST_HAVE_LAST_NAME
cont> not null
cont> deferrable,
cont> first_name char(20),
cont> birthday date
cont> constraint MUST_BE_IN_PAST
cont> check (birthday < current_date)
cont> not deferrable,
cont> constraint ALL_UNIQUE
cont> unique (last_name, first_name, birthday)
cont> deferrable initially immediate
cont>);
SQL>
SQL> show table (constraint) PERSON
Information for table PERSON

Table constraints for PERSON:
ALL_UNIQUE
Unique constraint

Null values are considered distinct
Table constraint for PERSON
Evaluated on each VERB
Source:
UNIQUE (last_name, first_name, birthday)

MUST_BE_IN_PAST
Check constraint
Column constraint for PERSON.BIRTHDAY
Evaluated on UPDATE, NOT DEFERRABLE
Source:
CHECK (birthday < current_date)

MUST_HAVE_LAST_NAME
Not Null constraint
Column constraint for PERSON.LAST_NAME
Evaluated on COMMIT
Source:
PERSON.LAST_NAME NOT null

Constraints referencing table PERSON:
No constraints found

6–10 SQL Statements

ALTER CONSTRAINT Statement

SQL>
SQL> alter constraint ALL_UNIQUE
cont> deferrable initially deferred;
SQL>
SQL> alter constraint MUST_HAVE_LAST_NAME
cont> comment is ’We must assume all persons have a name’
cont> not deferrable;
SQL>
SQL> alter constraint MUST_BE_IN_PAST
cont> deferrable initially immediate;
SQL>
SQL> show table (constraint) PERSON
Information for table PERSON

Table constraints for PERSON:
ALL_UNIQUE
Unique constraint

Null values are considered distinct
Table constraint for PERSON
Evaluated on COMMIT
Source:
UNIQUE (last_name, first_name, birthday)

MUST_BE_IN_PAST
Check constraint
Column constraint for PERSON.BIRTHDAY
Evaluated on each VERB
Source:
CHECK (birthday < current_date)

MUST_HAVE_LAST_NAME
Not Null constraint
Column constraint for PERSON.LAST_NAME
Evaluated on UPDATE, NOT DEFERRABLE
Comment: We must assume all persons have a name
Source:
PERSON.LAST_NAME NOT null

Constraints referencing table PERSON:
No constraints found

SQL>
SQL> commit;

SQL Statements 6–11

ALTER DATABASE Statement

ALTER DATABASE Statement

Alters a database in any of the following ways:

• For single-file and multifile databases, the ALTER DATABASE statement
changes the characteristics of the database root file.

The ALTER DATABASE statement lets you override certain characteristics
specified in the database root file parameters of the CREATE DATABASE
statement, such as whether or not a snapshot file is disabled. In addition,
ALTER DATABASE lets you control other characteristics that you cannot
specify in the CREATE DATABASE database root file parameters, such as
whether or not after-image journaling is enabled.

• For single-file and multifile databases, the ALTER DATABASE statement
changes the storage area parameters.

• For multifile databases only, the ALTER DATABASE statement adds,
alters, or deletes storage areas.

Environment

You can use the ALTER DATABASE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

6–12 SQL Statements

ALTER DATABASE Statement

ALTER DATABASE FILENAME <db-attach-spec>
PATHNAME <path-name> literal-user-auth

alter-root-file-params1
alter-root-file-params2
alter-root-file-params3
alter-journal-params
alter-storage-area-params
add-row-cache-clause
add-journal-clause
add-storage-area-clause
alter-row-cache-clause
alter-journal-clause
alter-storage-area-clause
drop-clause

db-attach-spec =

<file-spec>
<node-spec>

node-spec =

<nodename>
<access-string>
::

access-string =

" <user-name> <password> "
" <VMS-proxy-user-name> "

literal-user-auth =

USER ’<username>’
USING ’<password>’

SQL Statements 6–13

ALTER DATABASE Statement

alter-root-file-params1 =

attach-options
NUMBER OF USERS IS <number-users>
NUMBER OF BUFFERS IS <number-buffers>
NUMBER OF CLUSTER NODES IS <number-nodes>

(SINGLE INSTANCE)
MULTIPLE

NUMBER OF RECOVERY BUFFERS IS <number-buffers>
BUFFER SIZE IS <buffer-blocks> BLOCKS
SNAPSHOT IS ENABLED

IMMEDIATE
DEFERRED

DISABLED
DICTIONARY IS REQUIRED

NOT REQUIRED
DICTIONARY IS USED

NOT USED
ADJUSTABLE LOCK GRANULARITY IS ENABLED alg-options

DISABLED

attach-options =

MULTISCHEMA IS ON
OFF

OPEN IS MANUAL
AUTOMATIC

(WAIT <n> MINUTES FOR CLOSE)

alg-options =

(COUNT IS <n>)

6–14 SQL Statements

ALTER DATABASE Statement

alter-root-file-params2 =

global-buffer-params
CARDINALITY COLLECTION IS ENABLED
CARRY OVER LOCKS ARE DISABLED
GALAXY SUPPORT IS
LOCK PARTITIONING IS
LOGMINER SUPPORT IS
METADATA CHANGES ARE
STATISTICS COLLECTION IS
WORKLOAD COLLECTION IS
prestarted-transaction-params
LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS
RESERVE <n> CACHE SLOTS

JOURNALS
STORAGE AREAS
SEQUENCES

ROW CACHE IS ENABLED
DISABLED row-cache-options

SET TRANSACTION MODES txn-modes)
ALTER ,

global-buffer-params=

GLOBAL BUFFERS ARE ENABLED
DISABLED

(NUMBER IS <number-glo-buffers>)
USER LIMIT IS <max-glo-buffers>
PAGE TRANSFER VIA DISK

MEMORY
LARGE MEMORY IS ENABLED

DISABLED
,

prestarted-transaction-params =

PRESTARTED TRANSACTIONS ARE ENABLED
ON (prestart-trans-options)
DISABLED
OFF

SQL Statements 6–15

ALTER DATABASE Statement

prestart-trans-options =

WAIT <n> SECONDS FOR TIMEOUT
WAIT <n> MINUTES FOR TIMEOUT
NO TIMEOUT

row-cache-options =

(CHECKPOINT ALL ROWS TO BACKING FILE)
TIMED EVERY <n> SECONDS
UPDATED ROWS TO BACKING FILE

DATABASE
LOCATION IS <directory-spec>
NO LOCATION

SWEEP INTERVAL
NUMBER OF SWEEP ROWS IS <n>
SWEEP INTERVAL IS <n> SECONDS

,

txn-modes =

READ ONLY
NO READ WRITE

BATCH UPDATE
SHARED
PROTECTED READ
EXCLUSIVE WRITE
ALL
NONE

6–16 SQL Statements

ALTER DATABASE Statement

alter-root-file-params3 =

ASYNC BATCH WRITES ARE ENABLED async-bat-wr-options
DISABLED

ASYNC PREFETCH IS
DETECTED

ENABLED async-prefetch-options
DISABLED

INCREMENTAL BACKUP SCAN OPTIMIZATION
NO

RECOVERY JOURNAL (ruj-options)
SECURITY CHECKING IS security-checking-options
SYNONYMS ARE ENABLED
SHARED MEMORY IS SYSTEM

PROCESS
RESIDENT

NOTIFY IS ENABLED notify-options
DISABLED

asynch-bat-wr-options =

(CLEAN BUFFER COUNT IS <buffer-count> BUFFERS)
MAXIMUM BUFFER COUNT IS <buffer-count> BUFFERS

,

async-prefetch-options =

(DEPTH IS <number-buffers> BUFFERS)
THRESHOLD IS <number-buffers> BUFFERS

,

ruj-options =

LOCATION IS <directory-spec>
NO LOCATION
BUFFER MEMORY IS LOCAL

GLOBAL

SQL Statements 6–17

ALTER DATABASE Statement

security-checking-options =

EXTERNAL
(PERSONA SUPPORT IS ENABLED)

DISABLED
INTERNAL

(ACCOUNT CHECK IS ENABLED)
DISABLED

alter-journal-params =

JOURNAL IS

ENABLED
(aij-control-options-1)

aij-control-options-2
,

DISABLED

aij-control-options-1 =

ALLOCATION IS <n> BLOCKS
BACKUP SERVER IS AUTOMATIC <backup-file-spec>

MANUAL
BACKUP FILENAME <backup-file-spec>

backup-filename-options
NO BACKUP FILENAME
EXTENT IS <n> BLOCKS

backup-filename-options =

(NO EDIT STRING)
EDIT STRING IS SEQUENCE

YEAR
MONTH
DAY
HOUR
MINUTE
JULIAN
WEEKDAY
literal

+

6–18 SQL Statements

ALTER DATABASE Statement

aij-control-options-2 =

FAST COMMIT IS ENABLED fc-options
DISABLED

LOG SERVER IS MANUAL
AUTOMATIC

OVERWRITE IS ENABLED
DISABLED

SHUTDOWN TIME IS <n> MINUTES

fc-options =

(CHECKPOINT INTERVAL IS <n> BLOCKS)
TIMED EVERY <n> SECONDS
EVERY <n> TRANSACTIONS

COMMIT TO JOURNAL OPTIMIZATION
NO

TRANSACTION INTERVAL IS <number-txns>
,

notify-options =

(ALERT OPERATOR operator-class)
+

SQL Statements 6–19

ALTER DATABASE Statement

operator-class =

CENTRAL
NO DISKS

CLUSTER
CONSOLE
SECURITY
OPER1
OPER2
OPER3
OPER4
OPER5
OPER6
OPER7
OPER8
OPER9
OPER10
OPER11
OPER12
ALL
NONE

extent-params =

EXTENT IS ENABLED
DISABLED
<extent-pages> PAGES
(extension-options)

extension-options =

MINIMUM OF <min-pages> PAGES,

MAXIMUM OF <max-pages> PAGES,

PERCENT GROWTH IS <growth>

6–20 SQL Statements

ALTER DATABASE Statement

add-journal-clause =

ADD JOURNAL <journal-name>

FILENAME <journal-file-spec> add-aij-options

add-aij-options =

ALLOCATION IS <n> BLOCKS
EXTENT IS <n> BLOCKS
BACKUP FILENAME <backup-file-spec>

backup-filename-options
SAME BACKUP FILENAME AS JOURNAL
NO BACKUP FILENAME

add-storage-area-clause =

ADD STORAGE AREA <area-name>

storage-area-params-1
FILENAME <file-spec> storage-area-params-2

storage-area-params-1 =

ALLOCATION IS <number-pages> PAGES
CACHE USING <row-cache-name>
NO ROW CACHE
extent-params
INTERVAL IS <number-data-pages>
LOCKING IS ROW LEVEL

PAGE
PAGE FORMAT IS UNIFORM

MIXED
PAGE SIZE IS <page-blocks> BLOCKS

SQL Statements 6–21

ALTER DATABASE Statement

storage-area-params-2 =

CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
SNAPSHOT FILENAME <file-spec>
THRESHOLDS ARE (<val1>)

,<val2>
,<val3>

add-row-cache-clause =

ADD CACHE <row-cache-name>
row-cache-params1
row-cache-params2

alter-row-cache-clause =

ALTER CACHE <row-cache-name>
row-cache-params1
row-cache-params2

row-cache-params1 =

ALLOCATION IS <n>
EXTENT IS <n> BLOCK

BLOCKS
CACHE SIZE IS <n> ROW

ROWS
CHECKPOINT UPDATED ROWS TO BACKING FILE

DATABASE
ALL ROWS TO BACKING FILE

LARGE MEMORY IS ENABLED
ROW REPLACEMENT IS DISABLED
LOCATION IS <directory-spec>
NO LOCATION

6–22 SQL Statements

ALTER DATABASE Statement

row-cache-params2 =

NUMBER OF RESERVED ROWS IS <n>
SWEEP

ROW LENGTH IS <n>
BYTE
BYTES

ROW SNAPSHOT IS ENABLED rs-opt
DISABLED

SHARED MEMORY IS SYSTEM
PROCESS

RESIDENT

WINDOW COUNT IS <n>

rs-opt =

(CACHE SIZE IS <n> ROWS)

alter-journal-clause =

ALTER JOURNAL <journal-name>
RDB$JOURNAL

alter-aij-options

alter-aij-options =

JOURNAL IS UNSUPPRESSED
BACKUP FILENAME <backup-file-spec>

backup-filename-options
SAME BACKUP FILENAME AS JOURNAL
NO BACKUP FILENAME

SQL Statements 6–23

ALTER DATABASE Statement

alter-storage-area-clause =

ALTER STORAGE AREA <area-name>

alter-storage-area-params

alter-storage-area-params =

ALLOCATION IS <number-pages> PAGES
extent-params
CACHE USING <row-cache-name>
NO ROW CACHE
LOCKING IS ROW LEVEL

PAGE
READ WRITE
READ ONLY
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED

drop-clause =

DROP CACHE <row-cache-name>
DROP STORAGE AREA <area-name> CASCADE

RESTRICT
DROP JOURNAL <journal-name>

Arguments

ADD CACHE row-cache-name
Adds a new row cache. For information regarding the row-cache-params-1 and
row-cache-params-2, see the descriptions under the CREATE CACHE clause.

ADD JOURNAL journal-name
Creates a new journal file.

ADD STORAGE AREA area-name FILENAME file-spec
Specifies the name and file specification for a storage area you want to add to
the database. You can use the ADD STORAGE AREA clause only on multifile
databases. The storage area name cannot be the same as any other storage
area name in the database.

6–24 SQL Statements

ALTER DATABASE Statement

The ADD STORAGE AREA clause creates two files: a storage area file with an
.rda file extension and a snapshot file with an .snp file extension. If you omit
the FILENAME argument, the file specification uses the following defaults:

• Device—the current device for the process

• Directory—the current directory for the process

• File name—the name specified for the storage area

The file specification is used for the storage area and snapshot files that
comprise the storage area (unless you use the SNAPSHOT FILENAME
argument to specify a different file for the snapshot file, which you can only
specify with a multifile database). Because the ADD STORAGE AREA clause
creates two files with different file extensions, do not specify a file extension
with the file specification.

If you use the ALTER DATABASE statement to add a storage area, the change
is journaled, however, you should back up your database before making such a
change.

For important information about changes that are not journaled, see the Usage
Notes.

ADJUSTABLE LOCK GRANULARITY IS ENABLED
ADJUSTABLE LOCK GRANULARITY IS DISABLED
Enables or disables whether or not the database system automatically
maintains as few locks as possible on database resources. The default,
ENABLED, results in fewer locks against the database. However, if contention
for database resources is high, the automatic adjustment of locks can become a
CPU drain. You can trade more restrictive locking for less CPU usage in such
databases by disabling adjustable lock granularity.

ALERT OPERATOR
Specifies which operator will be notified of the occurrence of a database system
event. You can specify the following operator classes:

Operator Class Meaning

ALL The ALL operator class broadcasts a message to all
terminals that are enabled as operators and that are
attached to the system or cluster. These terminals
must be turned on and have broadcast-message
reception enabled.

SQL Statements 6–25

ALTER DATABASE Statement

Operator Class Meaning

NONE The NONE operator class inhibits the display of
messages to the entire system or cluster.

[NO] CENTRAL The CENTRAL operator class broadcasts messages
sent to the central system operator. The NO
CENTRAL operator class inhibits the display of
messages sent to the central system operator.

[NO] DISKS The DISKS operator class broadcasts messages
pertaining to mounting and dismounting disk
volumes. The NO DISKS operator class inhibits
the display of messages pertaining to mounting and
dismounting disk volumes.

[NO] CLUSTER The CLUSTER operator class broadcasts messages
from the connection manager pertaining to cluster
state changes. The NO CLUSTER operator class
inhibits the display of messages from the connection
manager pertaining to cluster state changes.

[NO] CONSOLE The CONSOLE class broadcasts messages to the
Oracle Enterprise Manager (OEM). NO CONSOLE
inhibits broadcast to OEM.

[NO] SECURITY The SECURITY operator class displays messages
pertaining to security events. The NO SECURITY
operator class inhibits the display of messages
pertaining to security events.

[NO] OPER1 through
[NO] OPER12

The OPER1 through OPER12 operator classes display
messages to operators identified as OPER1 through
OPER12. The NO OPER1 through NO OPER12
operator classes inhibit messages from being sent to
the specified operator.

ALLOCATION IS n BLOCKS
Specifies the number of blocks allocated for the .aij file. The default and
minimum is 512 blocks. Even if you specify a value less than 512 blocks, the
.aij file is allocated 512 blocks.

For information on determining the allocation value, see the Oracle Rdb Guide
to Database Design and Definition.

6–26 SQL Statements

ALTER DATABASE Statement

ALLOCATION IS number-pages PAGES
The number of database pages allocated to the storage area. Rdb will
automatically extend this allocation to account for internal structure pages,
such as SPAM (spage management) pages.

The altered area is extended if the specified value exceeds the current area
allocation. Otherwise the specified value is ignored with a warning as shown
in this example.

SQL> alter database filename mf_personnel alter storage area JOBS allocation
is 400 pages;
%RDMS-W-NOTEXTENDED, area BLUGUM_1:[SMITHI.DATABASES.V72]JOBS.RDA;1 cannot
be extended to 400 pages

ALTER CACHE row-cache-name
Alters an existing row cache.

ALTER JOURNAL journal-name
Alters existing journal files. RDB$JOURNAL is the default journal name if no
name is specified.

alter-root-file-params1
alter-root-file-params2
alter-root-file-params3
Parameters that control the characteristics of the database root file associated
with the database or that control the characteristics that apply to the entire
database. You can specify these parameters for either single-file or multifile
databases except as noted in the individual parameter descriptions. For more
information about database parameters and details about how they affect
performance, see the Oracle Rdb7 Guide to Database Performance and Tuning.

The ALTER DATABASE statement does not let you change all database root
file parameters that you can specify in the CREATE DATABASE statement.
You must use the EXPORT and IMPORT statements to change a number
of storage area parameters. For more information on changing storage area
parameters, see the IMPORT Statement.

alter-storage-area-params
Parameters that change the characteristics of database storage area files. You
can specify the same storage area parameters for either single-file or multifile
databases, but the effect of the clauses in this part of an ALTER DATABASE
statement differs.

• For single-file databases, the storage area parameters change the
characteristics for the single storage area in the database.

SQL Statements 6–27

ALTER DATABASE Statement

• For multifile databases, the storage area parameters change the
characteristics of the RDB$SYSTEM storage area.

You can also change some of the characteristics of the RDB$SYSTEM
storage area using the ALTER STORAGE AREA clause. However, you can
only change the read-only and read/write parameters in this part of the
ALTER DATABASE statement. See the ALTER STORAGE AREA clause
later in this Arguments list for more information about the RDB$SYSTEM
characteristics that you are allowed to alter.

The ALTER DATABASE statement does not let you change all storage area
parameters you can specify in the CREATE DATABASE statement. You must
use the EXPORT and IMPORT statements to change the following database
root file parameters:

• INTERVAL

• PAGE FORMAT

• PAGE SIZE

• SNAPSHOT FILENAME

• THRESHOLDS

ALTER STORAGE AREA area-name
Specifies the name of an existing storage area in the database that you want
to alter. You can use the ALTER STORAGE AREA clause only on multifile
databases.

You can specify RDB$SYSTEM for the area-name if you are altering the
following clauses:

• ALLOCATION IS number-pages PAGES

• extent-params

• CACHE USING row-cache-name

• NO ROW CACHE

• SNAPSHOT ALLOCATION IS snp-pages PAGES

• SHAPSHOT EXTENT

• CHECKSUM CALCULTION

• SNAPSHOT CHECKSUM CALCULATION

6–28 SQL Statements

ALTER DATABASE Statement

Oracle Rdb generates an error if you specify RDB$SYSTEM or the DEFAULT
storage area as the area-name when altering the following clauses:

• LOCKING IS PAGE LEVEL

• READ WRITE

• READ ONLY

If you want to change the read-only and read/write parameters of the
RDB$SYSTEM storage area using the ALTER DATABASE statement, you
must specify these parameters outside of the ALTER STORAGE AREA clause.

ALTER TRANSACTION MODES
Enables or disables the modes specified leaving the previously defined or
default modes enabled. This is an offline operation and requires exclusive
database access.

If the current transaction modes are SHARED and READ ONLY and you want
to add the EXCLUSIVE mode, use the following statement:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER TRANSACTION MODES (EXCLUSIVE);

ASYNC BATCH WRITES ARE ENABLED
ASYNC BATCH WRITES ARE DISABLED
Specifies whether asynchronous batch-writes are enabled or disabled.

Asynchronous batch-writes allow a process to write batches of modified data
pages to disk asynchronously (the process does not stall while waiting for the
batch-write operation to complete). Asynchronous batch-writes improve the
performance of update applications without the loss of data integrity.

By default, batch-writes are enabled.

For more information about when to use asynchronous batch-writes, see the
Oracle Rdb7 Guide to Database Performance and Tuning.

You can enable asynchronous batch-writes by defining the logical name
RDM$BIND_ABW_ENABLED.

ASYNC PREFETCH IS ENABLED
ASYNC PREFETCH IS DISABLED
Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk by fetching pages before a process actually
requests the pages.

SQL Statements 6–29

ALTER DATABASE Statement

Prefetch can significantly improve performance, but it may cause excessive
resource usage if it is used inappropriately. Asynchronous prefetch is enabled
by default. For more information about asynchronous prefetch, see the Oracle
Rdb7 Guide to Database Performance and Tuning.

You can enable asynchronous prefetch by defining the logical name
RDM$BIND_APF_ENABLED.

BACKUP FILENAME backup-file-spec
Specifies the default file specification to be used by the backup server.

During execution, the backup server and the RMU Backup After_Journal
command use this file specification as the name of the backup file. You can
override this value by specifying a file name for the journal file using the RMU
Backup After_Journal command.

backup-filename-options
Specifies whether or not the backup file name includes an edit string. When
the EDIT STRING clause is used, the specified backup file name is edited by
appending any or all of the edit string options listed in the following table.

Edit String Option Meaning

SEQUENCE The journal sequence number of the first journal file
in the backup operation.

YEAR The current year expressed as a 4-digit integer.
MONTH The current month expressed as a 2-digit integer

(01-12).
DAY The current day of the month expressed as a 2-digit

integer (00-31).
HOUR The current hour of the day expressed as a 2-digit

integer (00-23).
MINUTE The current minute of the hour expressed as a 2-digit

integer (00-59).
JULIAN The current day of the year expressed as a 3-digit

integer (001-366).
WEEKDAY The current day of the week expressed as a 1-digit

integer (1-7) where 1 is Sunday and 7 is Saturday.

6–30 SQL Statements

ALTER DATABASE Statement

Edit String Option Meaning

literal Any string literal. This string literal is copied to
the file specification. See Section 2.4.2.1 for more
information about string literals.

Use a plus sign (+) between multiple edit string options. The edit string
should be 32 characters or less in length.

The default is NO EDIT STRING which means the BACKUP FILENAME
supplied is all that is used to name the backup file.

BACKUP SERVER IS AUTOMATIC backup-file-spec
BACKUP SERVER IS MANUAL backup-file-spec
Specifies whether the backup server runs automatically or manually.

If BACKUP SERVER IS MANUAL is specified, you must execute the
RMU Backup After_Journal command manually. If BACKUP SERVER IS
AUTOMATIC is specified, a special backup server runs when a journal file in
the set is full and causes a switch over to another journal file.

The default is MANUAL.

BUFFER SIZE IS buffer-blocks BLOCKS
Specifies the number of blocks Oracle Rdb allocates per buffer. You need to
specify an unsigned integer greater than zero. The default buffer size is 3
times the PAGE SIZE value (6 blocks for the default PAGE SIZE of 2).

The buffer size is a global parameter and the number of blocks per page (or
buffer) is constrained to 64 blocks per page. The page size can vary by storage
area for multifile databases, and the page size should be determined by the
sizes of the records that will be stored in each storage area.

When choosing the number of blocks per buffer, choose a number so that
a round number of pages fits in the buffer. In other words, the buffer size
is wholly divisible by all page sizes for all storage areas in your multifile
database. For example, if you have three storage areas with page sizes of 2,
3, and 4 blocks each respectively, choosing a buffer size of 12 blocks ensures
optimal buffer utilization. In contrast, choosing a buffer size of 8 wastes 2
blocks per buffer for the storage area with a page size of 3 pages. Oracle Rdb
reads as many pages as fit into the buffer; in this instance it reads two 3-block
pages into the buffer, leaving 2 wasted blocks.

The altered buffer size must allow for existing page sizes. You cannot specify a
buffer size smaller than the largest existing page size.

SQL Statements 6–31

ALTER DATABASE Statement

CACHE USING row-cache-name
Specifies that the named row cache is the default physical row cache for all
storage areas in the database. All rows stored in each storage area are cached,
regardless of whether they consist of table data, segemented string data, or are
special rows such as index nodes.

You must either add the specified cache before completing the ALTER
DATABASE statement, or it must already exist.

Alter the database and storage area to asign a new physical area row cache
that overrides the database default physical area row cache. Only one physical
area row cache is allowed for each storage area.

You can have multiple row caches that contain rows for a single storage area
by defining logical area row caches, where the row cache name matches the
name of a table or index.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, then the NO ROW CACHE clause is the default.

CARDINALITY COLLECTION IS ENABLED
CARDINALITY COLLECTION IS DISABLED
Specifies whether or not the optimizer records cardinality updates in the
system tables. When enabled, the optimizer collects cardinalities for tables
and indexes as rows are inserted or deleted from tables. The update of
the cardinalities is performed at commit time, if sufficient changes have
accumulated, or at disconnect time.

In high update environments, it may be more convenient to disable cardinality
updates. If you disable this feature, you should manually maintain the
cardinalities using the RMU Collect Optimizer_Statistics command so that the
optimizer is given the most accurate values for estimation purposes.

Cardinality collection is enabled by default.

CARRY OVER LOCKS ARE ENABLED
CARRY OVER LOCKS ARE DISABLED
Enables or disables carry-over lock optimization. Carry-over lock optimization
holds logical area locks (table and index) across transactions. Carry-over locks
are enabled by default and are available as an online database modification.

For more information on carry-over lock optimization, see the CREATE
DATABASE Statement.

CHECKPOINT EVERY n TRANSACTIONS
A FAST COMMIT option which allows the checkpoint to be generated after a
set number of transactions.

6–32 SQL Statements

ALTER DATABASE Statement

See the following example.

SQL> alter database
cont> filename db$:scratch
cont>
cont> journal is enabled
cont> (fast commit is enabled
cont> (checkpoint every 20 transactions,
cont> checkpoint timed every 20 seconds
cont>)
cont>)
cont> add journal rdb$journal
cont> filename db$:scratch_aij
cont> ;
%RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery

CHECKPOINT INTERVAL IS n BLOCKS
You can limit how many transactions the database recovery process (DBR)
must redo by setting a checkpoint interval. Setting a checkpoint interval
instructs Oracle Rdb to periodically write modified pages to disk. This shortens
recovery time.

The value you assign to the checkpoint interval specifies the number of blocks
the .aij file is allowed to increase to before updated pages are transferred. For
example, if you set the checkpoint interval value equal to 100, all processes
transfer updated pages to the disk when 100 blocks were written to the .aij file
since the last checkpoint. Thus all processes contribute to .aij growth.

If no checkpoint interval is established and a process completes 1000
transactions but fails during number 1001, the DBR must redo transactions 1
through 1000 and undo number 1001.

When a process attaches to the database, it writes a checkpoint record to the
.aij file and notes the virtual block number (VBN) of the .aij file at which the
checkpoint record is located. If the checkpoint is located at VBN 120 and the
checkpoint interval is 100 blocks, the process checkpoints again when VBN 220
is reached.

Because all processes contribute to .aij file growth, a process may be able to
commit many transactions before checkpointing if update activity by other
processes is low. Conversely, if a process’ first transaction is long and if update
activity by other processes is high, the process may be forced to checkpoint
when it commits its first transaction.

When the database checkpoint interval value is reached, Oracle Rdb executes
the following steps:

1. Writes updated pages to the disk.

SQL Statements 6–33

ALTER DATABASE Statement

2. Writes a checkpoint record to the .aij file.

3. Updates the run-time user process block (RTUPB) for each process to
indicate where the checkpoint record is stored in the .aij file.

The RTUPB is a data structure in the database root file that maintains
information on each process accessing the database. The database recovery
process (DBR) uses the RTUPB checkpoint entry to determine where in the
.aij file recovery must start.

CHECKPOINT TIMED EVERY n SECONDS
Assigns a value to the checkpoint interval specifying the number of seconds
that can pass before updated pages are written. When the specified number
of seconds elapsed, Oracle Rdb executes the checkpoint steps described in the
previous section.

For example, if you specify TIMED EVERY 100 SECONDS, each process
checkpoints after at least 100 seconds have passed since its last checkpoint.

You can set both a checkpoint based on time and a checkpoint based on .aij file
growth; Oracle Rdb performs a checkpoint operation at whichever checkpoint it
reaches first.

The following statement enables fast commit processing and specifies
checkpoint intervals of 512 blocks and 12 seconds:

SQL> ALTER DATABASE FILENAME test1
cont> JOURNAL IS ENABLED
cont> (FAST COMMIT ENABLED
cont> (CHECKPOINT INTERVAL IS 512 BLOCKS,
cont> CHECKPOINT TIMED EVERY 12 SECONDS)
cont>);

CHECKPOINT UPDATED ROWS TO BACKING FILE
CHECKPOINT UPDATED ROWS TO DATABASE
CHECKPOINT ALL ROWS TO BACKING FILE
Specifies the default source and target during checkpoint operations for all row
caches. If ALL ROWS is specified, then the source records written during each
checkpoint operation are both the modified and the unmodified rows in a row
cache. If UPDATED ROWS is specified, then just the modified rows in a row
cache are checkpointed each time.

If the target of the checkpoint operation is BACKING FILE, then the RCS
process writes the source row cache entries to the backing (.rdc) files. The row
cache LOCATION, ALLOCATION, and EXTENT clauses are used to create the
backing files. Upon recovery from a node failure, the database recovery process
is able to repopulate the row caches in memory from the rows found in the
backing files.

6–34 SQL Statements

ALTER DATABASE Statement

If the target is DATABASE, then updated row cache entries are written back
to the database. The row cache LOCATION, ALLOCATION, and EXTENT
clauses are ignored. Upon recovery from a node failure, the database recovery
process has no data on the contents of the row cache. Therefore, it does not
repopulate the row caches in memory.

The CHECKPOINT clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this database-level CHECKPOINT clause.

CHECKSUM CALCULATION
SNAPSHOT CHECKSUM CALCULATION
This option allows you to enable or disable calculations of page checksums
when pages are read from or written to the storage area or snapshot files.

The default is ENABLED.

Note

Oracle Corporation recommends that you leave checksum calculations
enabled, which is the default.

With current technology, it is possible that errors may occur that the checksum
calculation can detect but that may not be detected by either the hardware,
firmware, or software. Unexpected application results and database corruption
may occur if corrupt pages exist in memory or on disk but are not detected.

Oracle Corporation recommends performing checksum calculations, except in
the following specific circumstances:

• Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

• You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the checksum calculation depends primarily on
the size of the database pages in your database. The larger the database
page, the more noticeable the CPU usage by the checksum calculation may
become.

Note

Oracle Corporation recommends that you carefully evaluate the trade-
off between reducing CPU usage by the checksum calculation and the
potential for loss of database integrity if checksum calculations are
disabled.

SQL Statements 6–35

ALTER DATABASE Statement

Oracle Corporation allows you to disable and, subsequently, re-enable
checksum calculation without error. However, once checksum calculations
have been disabled, corrupt pages may not be detected even if checksum
calculations are subsequently re-enabled.

CLEAN BUFFER COUNT IS buffer-count BUFFERS
Specifies the number of buffers to be kept available for immediate reuse.

The default is five buffers. The minimum value is one; the maximum value can
be as large as the buffer pool size.

You can override the number of clean buffers by defining the logical name
RDM$BIND_CLEAN_BUF_CNT. For information about how to set the values,
see the Oracle Rdb7 Guide to Database Performance and Tuning.

COMMIT TO JOURNAL OPTIMIZATION
NO COMMIT TO JOURNAL OPTIMIZATION
If you enable COMMIT TO JOURNAL OPTIMIZATION when you enable
fast commit processing, Oracle Rdb does not write commit information to the
database root file. This option enhances performance in database environments
that are update-intensive. Because of the prerequisites for enabling the journal
optimization option, general-use databases or databases that have many read-
only transactions may not benefit from this feature. For more information, see
the Oracle Rdb7 Guide to Database Performance and Tuning.

Note

If you specify COMMIT TO JOURNAL OPTIMIZATION, you must
disable or defer snapshots.

If you change snapshots to ENABLED IMMEDIATE, then you must
specify NO COMMIT TO JOURNAL OPTIMIZATION.

COUNT IS n
Specifies the number of levels on the page lock tree used to manage locks.
For example, if you specify COUNT IS 3, the fanout factor is (10, 100, 1000).
Oracle Rdb locks a range of 1000 pages and adjusts downward to 100 and then
to 10 and then to 1 page when necessary.

If the COUNT IS clause is omitted, the default is 3. The value of n can range
from 1 through 8.

DEPTH IS number-buffers BUFFERS
Specifies the number of buffers to prefetch for a process.

6–36 SQL Statements

ALTER DATABASE Statement

The default is one-quarter of the buffer pool, but not more than eight buffers.
You can override the number of buffers specified in the CREATE or ALTER
DATABASE statements by using the logical name RDM$BIND_APF_DEPTH.

You can also specify this option with the DETECTED ASYNC PREFETCH
clause.

DETECTED ASYNC PREFETCH IS ENABLED
DETECTED ASYNC PREFETCH IS DISABLED
Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk.

By using heuristics, detected asynchronous prefetch determines if an I/O
pattern is sequential in behavior even if sequential I/O is not actually executing
at the time. For example, when a LIST OF BYTE VARYING column is
fetched, the heuristics detect that the pages being fetched are sequential and
asynchronously fetches pages further in the sequence. This avoids wait times
when the page is really needed.

Detected asynchronous prefetch is enabled by default.

DICTIONARY IS REQUIRED
DICTIONARY IS NOT REQUIRED
Specifies whether or not definition statements issued for the database must
also be stored in the repository. If you specify the REQUIRED option, any data
definition statements issued after an ATTACH or DECLARE ALIAS statement
that does not specify the PATHNAME argument fails.

If you specify the DICTIONARY argument in an ALTER DATABASE
statement, you cannot specify any other database root file or storage area
parameters.

If you omitted the PATHNAME clause from the database root file parameters
in the CREATE DATABASE statement that created the database, SQL
generates an error if you specify DICTIONARY IS REQUIRED in an ALTER
DATABASE statement for the same database. This is not true if you use
the INTEGRATE statement with the CREATE PATHNAME clause to copy
database definitions to the repository before specifying the DICTIONARY IS
REQUIRED clause in an ALTER DATABASE statement for that database.

DICTIONARY IS USED
DICTIONARY IS NOT USED
Specifies whether or not to remove the link between the repository and
the database. If you specify the DICTIONARY IS NOT USED clause, the
definitions in both the repository and database are still maintained. After
removing the links, you can integrate the database to a new repository.

SQL Statements 6–37

ALTER DATABASE Statement

The DICTIONARY IS USED clause is the default.

DROP CACHE row-cache-name CASCADE
DROP CACHE row-cache-name RESTRICT
Deletes the specified row cache from the database. If the mode is RESTRICT,
then an exeption is raised if the row cache is assigned to a storage area. If the
mode is CASCADE, then the row cache is removed from all referencing storage
areas.

The default is RESTRICT if no mode is specified.

DROP JOURNAL journal-name
Deletes the specified journal file from the database.

You can only delete an .aij file that is not current and that has been backed up.

DROP STORAGE AREA area-name CASCADE
DROP STORAGE AREA area-name RESTRICT
Deletes the specified storage area definition and the associated storage area
and snapshot files. You can use the DROP STORAGE AREA clause only on
multifile databases.

If you use the RESTRICT keyword, you cannot delete a storage area if any
database object, such as a storage map, refers to the area or if there is data in
the storage area.

If you use the CASCADE keyword, Oracle Rdb modifies all objects that refer to
the storage area so that they no longer refer to it. However, Oracle Rdb does
not delete objects if doing so makes the database inconsistent.

If you use the ALTER DATABASE statement to delete a storage area, the
change is journaled, however, you should back up your database before making
such a change.

See the Usage Notes for additional information on deleting storage areas or for
important information about changes that are not journaled.

EXTENT IS n BLOCKS
Specifies the number of blocks of each .aij file extent. The default and
minimum extent for .aij files is 512 blocks.

EXTENT ENABLED
EXTENT DISABLED
Enables or disables extents. Extents are ENABLED by default and can be
changed on line; however, the new extents are not immediately effective on all
nodes of a cluster. On the node on which you have changed extents, the new
storage area extents are immediately effective for all users. The new storage

6–38 SQL Statements

ALTER DATABASE Statement

area extents become effective as the database is attached on each node of the
cluster.

You can encounter performance problems when creating hashed indexes in
storage areas with the mixed page format if the storage area was created
specifying the wrong size for the area and if extents are enabled. By disabling
extents, this problem can be diagnosed early and corrected to improve
performance.

EXTENT IS extent-pages PAGES
EXTENT IS (extension-options)
Changes the number of pages of each storage area file extent. See the
description under the SNAPSHOT EXTENT argument.

FAST COMMIT IS ENABLED
FAST COMMIT IS DISABLED
By default, Oracle Rdb writes updated database pages to the disk each time
a transaction executes the COMMIT statement. If a transaction fails before
committing, Oracle Rdb only needs to roll back (undo) the current failed
transaction; it never has to redo previous successful transactions.

You can change the commit processing method by enabling journal fast commit
processing. With journal fast commit enabled, Oracle Rdb keeps updated
pages in the buffer pool (in memory) and does not write the pages to the disk
when a transaction commits. The updated pages remain in the buffer pool
until the process meets a condition specified by the database administrator or
applications programmer. At the moment the condition is met (the checkpoint),
all the pages the process updated for multiple transactions are written to the
disk.

You can set a checkpoint for your process when:

• A fixed number of transactions are committed or aborted. You set this by
specifying CHECKPOINT EVERY n TRANSACTIONS.

• A specified time interval elapsed. You set this by specifying the
CHECKPOINT TIMED EVERY n SECONDS clause.

• The after-image journal (.aij) file increased by a specified number of blocks.
You set this by specifying the CHECKPOINT INTERVAL IS n BLOCKS
clause.

If a transaction fails, Oracle Rdb must undo the current, failed transaction and
redo all the committed transactions since the last checkpoint. Redoing updates
involves reading the .aij file and reapplying the changes to the relevant data
pages.

SQL Statements 6–39

ALTER DATABASE Statement

Fast commit processing applies only to data updates: erase, modify, and store
operations. Transactions that include data definition statements, such as
create logical area or create index operations, force a checkpoint at the end of
the transaction. If you do not specify values with the FAST COMMIT clause,
the default values are applied.

Note

To enable FAST COMMIT, you must first enable after-image journaling.

FILENAME file-spec
PATHNAME path-name
Identifies the database root file associated with the database. If you specify
a repository path name, the path name indirectly specifies the database root
file. The ALTER DATABASE statement does not change any definitions in
the repository, so there is no difference in the effect of the PATHNAME and
FILENAME arguments.

If you specify PATHNAME, SQL does not use the repository’s fully qualified
name. Instead, SQL uses the name stored as the user-supplied name in the
repository. In the following example, SQL uses the name TEST as the file
name, not DB$DISK:[DBDIR]TEST.RDB. As a result, the database root file
must be located in your present working directory or the database name must
be a logical name when you use the PATHNAME clause.

$ REPOSITORY OPERATOR
.
.
.

CDO> show database/full test
Definition of database TEST
| database uses RDB database TEST
| database in file TEST
| | fully qualified file DB$DISK:[DBDIR]TEST.RDB;
| | user-specified file DB$DISK:[DBDIR]test.rdb

If the database referred to in the PATHNAME or FILENAME argument has
been attached, the ALTER DATABASE statement will fail with a file access
conflict error.

FILENAME journal-file-spec
Specifies the journal file specification with the default file extension .aij.

6–40 SQL Statements

ALTER DATABASE Statement

GALAXY SUPPORT IS ENABLED
GALAXY SUPPORT IS DISABLED
Allows global memory to be shared in an OpenVMS Galaxy configuration.
Galaxy support is disabled by default.

OpenVMS Galaxy is a software architecture for the OpenVMS Alpha operating
system that enables multiple instances of OpenVMS to execute cooperatively
in a single computer. An instance refers to a copy of the OpenVMS Alpha
operating system. As an extension of the existing OpenVMS cluster support
within Oracle Rdb, Oracle Rdb provides support for databases opened on
multiple instances (or nodes) within a Galaxy system to share data structures
in memory. Within an Oracle Rdb Galaxy environment, all instances with an
open database share:

• Database root objects (for example, TSN blocks and SEQ blocks)

• Global buffers (if enabled)

• Row caches and Row Cache Server process (RCS) (if enabled)

GLOBAL BUFFERS ARE ENABLED
GLOBAL BUFFERS ARE DISABLED
Specifies whether or not Oracle Rdb maintains one global buffer pool per
VMScluster node for each database. By default, Oracle Rdb maintains a local
buffer pool for each attach (GLOBAL BUFFERS ARE DISABLED). For more
than one attach to use the same page, each must read it from the disk into
their local buffer pool. A page in the global buffer pool can be read by more
than one attach at the same time, although only one attach reads the page
from the disk into the global buffer pool. Global buffers improve performance
because the I/O is reduced, and memory is better utilized.

Note

If GALAXY SUPPORT is enabled, then a single global buffer pool is
shared by all Galaxy nodes.

INCREMENTAL BACKUP SCAN OPTIMIZATION
NO INCREMENTAL BACKUP SCAN OPTIMIZATION
Specifies whether Oracle Rdb checks each area’s SPAM pages or each database
page to find changes during incremental backup.

SQL Statements 6–41

ALTER DATABASE Statement

If you specify INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle Rdb
checks each area’s SPAM pages and scans the SPAM interval of pages only if
the SPAM transaction number (TSN) is higher than the last full backup TSN,
which indicates that a page in the SPAM interval has been updated since the
last full backup operation.

Specify INCREMENTAL BACKUP SCAN OPTIMIZATION if your database
has large SPAM intervals or infrequently occurring updates, and you want to
increase the speed of incremental backups. If you disable the attribute (using
the NO INCREMENTAL BACKUP SCAN OPTIMIZATION clause), you cannot
enable it until immediately after the next full backup.

If you specify NO INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle
Rdb checks each page to find changes during incremental backup.

Specify the NO INCREMENTAL BACKUP SCAN OPTIMIZATION clause if
your database has frequently occurring updates, uses bulk-load operations,
or does not use incremental backups, or if you want to improve run-time
performance.

The default is INCREMENTAL BACKUP SCAN OPTIMIZATION.

JOURNAL IS ENABLED
JOURNAL IS DISABLED
Specifies whether or not journaling is enabled.

If journal files already exist, the JOURNAL IS ENABLED clause simply
restarts the journaling feature.

If no journal files exist when the ALTER DATABASE . . . JOURNAL IS
ENABLED statement completes, an exception is raised. For example:

SQL> ALTER DATABASE FILENAME sample
cont> JOURNAL IS ENABLED;
%RDMS-F-NOAIJENB, cannot enable after-image journaling without any AIJ journals

Use the ADD JOURNAL clause to create journal files.

The ENABLED option can be followed by a list of database journal options.

All journal files remain unchanged but become inaccessible when you disable
them. You cannot specify database journal options with the DISABLED option.

JOURNAL IS UNSUPPRESSED
If a journal file becomes inaccessible, it is disabled by the journaling system. It
remains in that state until you correct the problem and manually unsuppress
that journal file.

6–42 SQL Statements

ALTER DATABASE Statement

literal-user-auth
Specifies the user name and password for access to databases, particularly
remote database.

This literal lets you explicitly provide user name and password information in
the ALTER DATABASE statement.

LOCATION IS directory-spec
Specifies the name of the default directory to which row cache backing file
information is written. The database system generates a file name (row-cache-
name.rdc) automatically for each row cache backing file it creates when the
RCS process starts up. Specify a device name and directory name enclosed
within single quotation marks (’); do not include a file specification. The file
name is the row-cache-name specified when creating the row cache. By default,
the location is the directory of the database root file.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location, which is the default for the database.

This clause is ignored if the row cache is defined to checkpoint to the database.

LOCK PARTITIONING IS ENABLED
LOCK PARTITIONING IS DISABLED
Specifies whether more than one lock tree is used for the database or all lock
trees for a database are mastered by one database resource tree.

When partitioned lock trees are enabled for a database, locks for storage areas
are separated from the database resource tree and all locks for each storage
area are independently mastered on the VMScluster node that has the highest
traffic for that resource. OpenVMS determines the node that is using each
resource the most and moves the resource hierarchy to that node.

You cannot enable lock partitioning for single-file databases. You should not
enable lock partitioning for single-node systems, because all lock requests are
local on single-node systems.

By default, lock partitioning is disabled.

LOCK TIMEOUT INTERVAL IS number-seconds SECONDS
Specifies the number of seconds for processes to wait during a lock conflict
before timing out. The number can be between 1 and 65,000 seconds.

Specifying 0 is interpreted as no lock timeout interval being set. It is not
interpreted as 0 seconds.

SQL Statements 6–43

ALTER DATABASE Statement

The lock timeout interval is database-wide; it is used as the default and
the upper limit when determining the timeout interval. For example, if the
database definer specified LOCK TIMEOUT INTERVAL IS 25 SECONDS
in the ALTER DATABASE statement, and a user of that database specified
SET TRANSACTION WAIT 30 or changed the logical name RDM$BIND_
LOCK_TIMEOUT_INTERVAL to 30, SQL still uses the interval 25. For more
information on timeout intervals, see the Oracle Rdb7 Guide to Distributed
Transactions.

LOCKING IS ROW LEVEL
LOCKING IS PAGE LEVEL
Specifies if locking is at the page or row level. This clause provides an
alternative to requesting locks on records. The default is ROW LEVEL.

When many records are accessed in the same area and on the same page, the
LOCKING IS PAGE LEVEL clause reduces the number of lock operations
perfomed to process a transaction; however, this is at the expense of reduced
concurrency because these page locks are held until COMMIT/ROLLBACK
time. Transactions that benefit most with page-level locking are of short
duration and also access several database records on the same page.

Use the LOCKING IS ROW LEVEL clause if transactions are long in duration
and lock many rows.

The LOCKING IS PAGE LEVEL clause causes fewer blocking asynchronous
system traps and provides better response time and utilization of system
resources. However, there is a higher contention for pages and increased
potential for deadlocks and long transactions may use excessive locks.

Page-level locking is never applied to RDB$SYSTEM or the DEFAULT storage
area, either implicitly or explicitly, because the locking protocol can stall
metadata users.

You cannot specify page-level locking on single-file databases.

LOG SERVER IS MANUAL
LOG SERVER IS AUTOMATIC
Specifies if the AIJ log server (ALS) is activated manually or automatically.
The default is manual.

Multiple-user databases with medium to high update activity can experience
after-image journal (.aij) file bottlenecks. To alleviate these bottlenecks, you
can specify the LOG SERVER clause to transfer log data to the .aij file either
automatically or manually. On a single node with ALS, there is no AIJ locking.

6–44 SQL Statements

ALTER DATABASE Statement

If the log server is set to MANUAL, you must execute the RMU Server After_
Journal command with the Start qualifier to start the log server. In this case,
the database must already be open. If the OPEN IS MANUAL clause was
specified, an explicit RMU Open command needs to be executed before the log
server is started. If the OPEN IS AUTOMATIC clause was specified, at least
one user should be attached to the database before the log server is started.

If the log server is set to AUTOMATIC, the log server starts when the database
is opened, automatically or manually, and is shut down when the database is
closed.

For more information on setting log servers, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

LOGMINER SUPPORT IS ENABLED
LOGMINER SUPPORT IS DISABLED
Allows additional information to be written to the after-image journal file to
allow the use of the RMU Unload After_Image command. See the Oracle RMU
Reference Manual for more details. Logminer support is disabled by default.

The LOGMINER SUPPORT clause allows the continuous mode for LogMiner
to be enabled and disabled.

• LOGMINER SUPPORT IS ENABLED (CONTINUOUS)

Enables continuous LogMiner.

• LOGMINER SUPPORT IS ENABLED (NOT CONTINUOUS)

Disables continuous LogMiner, but leaves LogMiner enabled.

• LOGMINER SUPPORT IS DISABLED

Disables LogMiner, including disabling continuous LogMiner.

MAXIMUM BUFFER COUNT IS buffer-count
Specifies the number of buffers a process will write asynchronously.

The default is one-fifth of the buffer pool, but not more than 10 buffers. The
minimum value is 2 buffers; the maximum value can be as large as the buffer
pool.

You can override the number of buffers to be written asynchronously by
defining the logical name RDM$BIND_BATCH_MAX. For information about
how to set the values, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

SQL Statements 6–45

ALTER DATABASE Statement

MAXIMUM OF max-pages PAGES
Specifies the maximum number of pages of each extent. The default is 9999
pages.

METADATA CHANGES ARE ENABLED
METADATA CHANGES ARE DISABLED
Specifies whether or not data definition changes are allowed to the database.
This attribute becomes effective at the next database attach and affects all
ALTER, CREATE, and DROP statements (except ALTER DATABASE which
is needed for database tuning) and the GRANT, REVOKE, and TRUNCATE
TABLE statements. For example:

SQL> CREATE DATABASE FILENAME sample;
SQL> CREATE TABLE t (a INTEGER);
SQL> DISCONNECT ALL;
SQL> ALTER DATABASE FILENAME sample
cont> METADATA CHANGES ARE DISABLED;
SQL> ATTACH ’FILENAME sample’;
SQL> CREATE TABLE s (b INTEGER);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-NOMETADATA, metadata operations are disabled

The METADATA CHANGES ARE DISABLED clause prevents data definition
changes to the database.

The METADATA CHANGES ARE ENABLED clause allows data definition
changes to the database by users granted the DBADMIN privilege.

METADATA CHANGES ARE ENABLED is the default.

MINIMUM OF min-pages PAGES
Specifies the minimum number of pages of each extent. The default is 99
pages.

MULTISCHEMA IS ON
MULTISCHEMA IS OFF
Specifies the multischema attribute for the database. If a database has the
multischema attribute, you can create multiple schemas in that database and
group them within catalogs. The MULTISCHEMA IS ON option is the default
for databases created with the multischema attribute. MULTISCHEMA IS
OFF is the default for databases created without the multischema attribute.

You can create a database using the CREATE DATABASE MULTISCHEMA IS
ON clause, but you cannot use ALTER DATABASE MULTISCHEMA IS OFF
to take away the multischema attribute. Once a database has the multischema
attribute, you cannot change it.

For more information about multischema databases, see Section 2.2.11.

6–46 SQL Statements

ALTER DATABASE Statement

NO BACKUP FILENAME
Removes a previously established backup file specification.

NO LOCATION
This is a subclause of other clauses and has different effects, depending upon
the clause in which it is used, as follows:

• In the row-cache-options clause

Removes the location previously specified in a LOCATION IS clause for the
row cache. If you specify NO LOCATION, the row cache location becomes
the directory of the database root file.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or
ALTER CACHE clause overrides this location, which is the default for
the database.

• In a CREATE CACHE, ADD CACHE, or ALTER CACHE clause (row-
cache-params1 clause)

Removes the location previously specified in a LOCATION IS clause for
the row cache backing file. If you specify NO LOCATION, the row cache
location becomes the directory of the database root file.

This clause is ignored if the row cache is defined to checkpoint to the
database.

NO ROW CACHE
Specifies that the database default is to not assign a row cache to all storage
areas in the database. You cannot specify the NO ROW CACHE clause if you
specify the CACHE USING clause.

Alter the storage area and name a row cache to override the database default.
Only one row cache is allowed for each storage area.

If you do not specify the NO ROW CACHE clause or the CACHE USING
clause, then the NO ROW CACHE clause is the default.

NO SWEEP INTERVAL
NO SWEEP INTERVAL disables periodic timed sweeps.

NOTIFY IS ENABLED
NOTIFY IS DISABLED
Specifies whether system notification is enabled or disabled.

When the system notification is enabled, the system is notified (using the
OpenVMS OPCOM facility) in the event of events such as running out of disk
space for a journal.

SQL Statements 6–47

ALTER DATABASE Statement

If you specify the NOTIFY IS ENABLED clause and do not specify the ALERT
OPERATOR clause, the operator classes used are CENTRAL and CLUSTER.
To specify other operator classes, use the ALERT OPERATOR clause.

The NOTIFY IS ENABLED clause replaces any operator classes set by the
RMU Set After_Journal Notify command.

The default is disabled.

NUMBER IS number-glo-buffers
Specifies the total number of buffers in the global buffer pool. This number
appears as "global buffer count" in RMU Dump command output. Base this
value on the database users’ needs and the number of attachments. The
default is the maximum number of attachments multiplied by 5.

Note

Do not confuse the NUMBER IS parameter with the NUMBER OF
BUFFERS IS parameter. The NUMBER OF BUFFERS IS parameter
determines the default number of buffers Oracle Rdb allocates to
each user’s process that attaches to the database. The NUMBER OF
BUFFERS IS parameter applies to, and has the same meaning for,
local and global buffering. The NUMBER IS parameter has meaning
only within the context of global buffering.

You can override the default number of user-allocated buffers by defining a
value for the logical name RDM$BIND_BUFFERS. For more information on
user-allocated buffers, see Oracle Rdb7 Guide to Database Performance and
Tuning.

Although you can change the NUMBER IS parameter on line, the change does
not take effect until the next time the database is opened.

NUMBER OF BUFFERS IS number-buffers
The number of buffers SQL allocates for each process using this database.
Specify an unsigned integer with a value greater than or equal to 2 and less
than or equal to 32,767. The default is 20 buffers.

NUMBER OF CLUSTER NODES IS number-nodes (SINGLE INSTANCE)
NUMBER OF CLUSTER NODES IS number-nodes (MULTIPLE INSTANCE)
Sets the upper limit on the maximum number of VMS cluster nodes from which
users can access the shared database. Specify this clause only if the database
named in the ALTER DATABASE statement refers to a multifile database. The

6–48 SQL Statements

ALTER DATABASE Statement

default is 16 nodes. The range is 1 to 96 nodes. The actual maximum limit is
the current VMS cluster node limit set by your system administrator.

The Oracle Rdb root file data structures (.rdb) are mapped to shared memory,
each such shared memory copy is known as an Rdb instance. When there
is only one copy of shared memory containing root file information, several
optimizations are enabled to reduce locking and root file I/O. activity. Specify
NUMBER OF CLUSTER NODES is set to 1, or use the SINGLE INSTANCE
clause to enable these optimizations.

MULTIPLE INSTANCE means that the Oracle Rdb root file data structures
are mapped on different system and are kept consistent through disk I/O.
Such systems can not benefit from single instance optimizations. MULTIPLE
INSTANCE is the default.

NUMBER OF RECOVERY BUFFERS IS number-buffers
Specifies the number of buffers allocated to the automatic recovery process that
Oracle Rdb initiates after a system or process failure. This recovery process
uses the recovery-unit journal file (.ruj file extension).

You can specify any number greater than or equal to 2 and less than or equal
to 32,767. The default value for the NUMBER OF RECOVERY BUFFERS
parameter is 20. If you have a large, multifile database and you work on a
system with a large amount of memory, specify a large number of buffers. The
result is faster recovery time. However, make sure your buffer pool does not
exceed the amount of memory you can allocate for the pool.

Use the NUMBER OF RECOVERY BUFFERS option to increase the number
of buffers allocated to the recovery process.

SQL> ALTER DATABASE FILENAME personnel
cont> NUMBER OF RECOVERY BUFFERS IS 150;

This option is used only if the NUMBER OF RECOVERY BUFFERS value
is larger than the NUMBER OF BUFFERS value. For more information on
allocating recovery buffers, see the Oracle Rdb Guide to Database Maintenance.

NUMBER OF SWEEP ROWS IS n
Specifies the number of modified rows that will be written from the row cache
back to the database by the row cache server (RCS) process during a sweep
operation. When the RCS is notified that a cache is "full" of modified data,
the RCS starts a sweep to make space available in the cache for subsequent
transactions to be able to insert rows into the cache. Oracle Corporation
recommends that you initially specify the number of sweep rows to be
approximately 5 percent of the total number of rows in the cache. Then
monitor performance and adjust the number of sweep rows, if necessary.

SQL Statements 6–49

ALTER DATABASE Statement

Allowable values must be in the range 2 through 524288. If not specified, the
default is 3,000 rows.

NUMBER OF USERS IS number-users
Limits the maximum number of users allowed to access the database at one
time. Specify this clause only if the database named in the ALTER DATABASE
statement refers to a multifile database.

The default is 50 users. After the maximum is reached, the next user who
tries to invoke the database receives an error message and must wait. The
maximum number of users you can specify is 16368 and the minimum is 1
user.

Note that number of users is defined as the number of active attachments to
the database. Therefore, if a single process is running one program but that
program performs 12 attach operations, the process is responsible for 12 active
users.

If you use the ALTER DATABASE statement to change the current number of
users, the change is not journaled. Therefore, back up your database before
making such a change. See the Usage Notes for important information about
changes that are not journaled.

OPEN IS MANUAL
OPEN IS AUTOMATIC
Specifies whether or not the database must be explicitly opened before users
can attach to it. The default, OPEN IS AUTOMATIC, means that any user
can open a previously unopened or a closed database by attaching to it and
executing a statement. The OPEN IS MANUAL option means that a privileged
user must issue an explicit OPEN statement through Oracle RMU, the Oracle
Rdb management utility, before other users can attach to the database.

To issue the RMU Open command, you must have the RMU$OPEN privilege
for the database.

The OPEN IS MANUAL option limits access to databases.

You will receive an error message if you specify both OPEN IS AUTOMATIC
and OPEN IS MANUAL options.

OVERWRITE IS ENABLED
OVERWRITE IS DISABLED
Specifies whether the overwrite option is enabled or disabled.

6–50 SQL Statements

ALTER DATABASE Statement

After-image journal files are used for database recovery in case of media
failure and for transaction recovery as part of the fast commit feature. In some
environments, only the fast commit feature is of interest and a small set of
journal files can be used as a circular fast commit log with no backup of the
contents required. The OVERWRITE option instructs Oracle Rdb to write over
journal records that would normally be used for media recovery. The resulting
set of journal files is unable to be used by the RMU Recover command for
media recovery.

The OVERWRITE option is ignored when only one after-image journal (.aij) file
exists. Adding subsequent journal files activates the OVERWRITE option.

The default is DISABLED.

PAGE TRANSFER VIA DISK
PAGE TRANSFER VIA MEMORY
Specifies whether Oracle Rdb transfers (flushes) pages to disk or to memory.

When you specify PAGE TRANSFER VIA MEMORY, processes on a single
node can share and update database pages in memory without transferring the
pages to disk. It is not necessary for a process to write a modified page to disk
before another process accesses the page.

The default is to DISK. If you specify PAGE TRANSFER VIA MEMORY, the
database must have the following characteristics:

• The NUMBER OF NODES must be one, or SINGLE INSTANCE must be
specified in the NUMBER OF CLUSTER NODES clause.

• GLOBAL BUFFERS must be enabled.

• After-image journaling must be enabled.

• FAST COMMIT must be enabled.

If the database does not have these characteristics, Oracle Rdb will perform
page transfers via disk.

For more information about page transfers, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

PERCENT GROWTH IS growth
Specifies the percent growth of each extent. The default is 20 percent growth.

PRESTARTED TRANSACTIONS ARE ENABLED (prestart-trans-options)
Enables the prestarting of transactions.

Note that the keyword ON, available in previous versions, is synonymous with
ENABLED.

SQL Statements 6–51

ALTER DATABASE Statement

This clause is used to establish a permanent database setting for prestarted
transactions. In prior versions, this clause was only used to temporarily set
the mode for prestarted transaction for the implicit attach performed by the
CREATE DATABASE and IMPORT DATABASE statements.

The prestart-trans-options can be one of the following clauses:

• WAIT n SECONDS FOR TIMEOUT

The n represents the number of seconds to wait before aborting the
prestarted transaction. Timing out the prestarted transaction may prevent
snapshot file growth in environments where servers stay attached to the
database with long periods of inactivity.

• WAIT n MINUTES FOR TIMEOUT

The n represents the number of minutes to wait before aborting the
prestarted transaction.

• NO TIMEOUT

This is the default for a prestarted transaction.

PRESTARTED TRANSACTIONS ARE DISABLED
Disables the prestarting of transactions.

Note that the keyword OFF, available in previous versions, is synonymous with
DISABLED.

READ WRITE
READ ONLY
The READ options of the alter-storage-area-params clause permit you to
change existing storage area access as follows:

• Select the READ WRITE option to change any storage area to read/write
access.

• Select the READ ONLY option to change any storage area to read-only
access.

If you want to change the read-only and read/write parameters of the
RDB$SYSTEM storage area, you must specify these parameters at this
point of your ALTER DATABASE statement and not in the ALTER STORAGE
AREA clause. For example:

6–52 SQL Statements

ALTER DATABASE Statement

SQL> -- You can change the RDB$SYSTEM storage area by altering
SQL> -- the database.
SQL> --
SQL> ALTER DATABASE FILENAME mf_personnel
cont> READ ONLY;
SQL> --
SQL> -- An error is returned if you try to change the RDB$SYSTEM storage
SQL> -- area to read-only using the ALTER STORAGE AREA clause.
SQL> --
SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA RDB$SYSTEM
cont> READ ONLY;
%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database
parameter block (DPB)
-RDMS-E-NOCHGRDBSYS, cannot change RDB$SYSTEM storage area explicitly

SQL provides support for read-only databases and databases with one or more
read-only storage areas.

You can take advantage of read-only support if you have a stable body of data
that is never (or rarely) updated. When the RDB$SYSTEM storage area is
changed to read-only, lock conflicts occur less frequently, and the automatic
updating of index and table cardinality is inhibited.

Read-only databases consist of:

• A read/write database root file

• One or more read-only storage areas and no read/write storage areas

Read-only databases can be published and distributed on CD–ROM.

Read-only storage areas:

• Have snapshot files but do not use them. (Data in a read-only storage area
is not updated; specify a small number for the initial snapshot file size for
a read-only storage area.)

• Eliminate page and record locking in the read-only storage areas.

• Are backed up by the RMU Backup command by default unless you
explicitly state the Noread_Only qualifier, which excludes read-only areas
without naming them.

• Are restored by the RMU Restore command if they were previously backed
up.

• Are recovered by the RMU Recover command. However, unless the
read-only attribute was modified, the read-only area does not change.

SQL Statements 6–53

ALTER DATABASE Statement

• Are not recovered by the RMU Recover command with the Area=* qualifier,
in which you are not explicitly naming the areas needing recovery, unless
they are inconsistent.

You use the READ ONLY option to change a storage area from read/write
to read-only access. If you wanted to facilitate batch-update transactions to
infrequently changed data, you would use the READ WRITE option to change
a read-only storage area back to read/write.

If you change a read/write storage area to read-only, you cannot specify the
EXTENT, SNAPSHOT ALLOCATION, and SNAPSHOT EXTENT clauses.

A database with both read/write and read-only storage areas can be fully
recovered after a system failure only if after-image journaling is enabled on the
database. If your database has both read/write and read-only storage areas but
does not have after-image journaling enabled, perform full backup operations
(including read-only areas) at all times. Doing full backup operations enables
you to recover the entire database to its condition at the time of the previous
backup operation.

For a complete description of read-only databases and read-only storage areas,
see the Oracle Rdb7 Guide to Database Performance and Tuning.

RECOVERY JOURNAL (BUFFER MEMORY IS LOCAL)
RECOVERY JOURNAL (BUFFER MEMORY IS GLOBAL)
Specifies whether RUJ buffers will be allocated in global or local memory.

The RUJ buffers used by each process are normally allocated in local virtual
memory. With the introduction of row caching, these buffers now can be
assigned to a shared global section (global memory) on OpenVMS, so that the
recovery process can process this in-memory buffer and possibly avoid a disk
access.

You can define this buffer memory to be global to improve row caching
performance for recovery. If row caching is disabled, then buffer memory is
always local.

RECOVERY JOURNAL (LOCATION IS directory-spec)
Specifies the location, including device and directory, in which the recovery-unit
journal (.ruj) file is written. Do not include network node names, file names or
process-concealed logical names. The default is the current user’s login device.

See the Oracle Rdb Guide to Database Maintenance for more information on
recovery-unit journal files.

6–54 SQL Statements

ALTER DATABASE Statement

Following is an example using this clause:

SQL> ALTER DATABASE FILENAME SAMPLE
cont> RECOVERY JOURNAL (LOCATION IS ’SQL_USER1:[DBDIR.RECOVER]’);

RECOVERY JOURNAL (NO LOCATION)
Removes a location previously defined by a RECOVERY JOURNAL LOCATION
IS clause. This causes the recovery journal to revert to the default location.

RESERVE n CACHE SLOTS
Specifies the number of row caches for which slots are reserved in the database.

You can use the RESERVE CACHE SLOTS clause to reserve slots in the
database root file for furture use by the ADD CACHE clause. You can only add
row caches if row cache slots are available. Slots become available after you
issue a DROP CACHE clause or a RESERVE CACHE SLOTS clause.

You cannot reduce the number of reserved slots for row caching. If you reserve
10 slots and later reserve 5 slots, a total of 15 slots are reserved for row caches.

RESERVE n JOURNALS
Specifies the number of journal files for which slots are to reserve in the
database. The number of slots for journal files must be a positive number
greater than zero.

This feature is additive in nature. In other words, the number of reserved
slots for journal files cannot be decreased once the RESERVE clause has been
issued. If you reserve 10 slots and later reserve 5 slots, you have a total of 15
reserved slots for journal files plus 1 slot (totaling 16 reserved slots) because
you initially get 1 pre-reserved slot.

You must reserve slots or delete an existing journal file before you can add new
journal files to the database.

You cannot reserve journal files for a single-file database.

RESERVE n SEQUENCES
Specifies the number of sequences for which slots are reserved in the database.
Sequences are reserved in multiples of 32. Thus, if you specify a value less
than 32 for n, 32 slots are reserved. If you specify a value of 33, 64 slots are
reserved, and so on.

You can use the RESERVE SEQUENCES clause to reserve slots in the
database root file for future use by the CREATE SEQUENCE statement.
Sequences can be created only if sequence slots are available. Slots become
available after a DROP SEQUENCE statement or a RESERVE SEQUENCES
clause of the ALTER DATABASE statement is executed.

SQL Statements 6–55

ALTER DATABASE Statement

RESERVE n STORAGE AREAS
Specifies the number of storage areas for which slots are to reserve in the
database. The number of slots for storage areas must be a positive number
greater than zero.

You can use the RESERVE STORAGE AREA clause to reserve slots in the
database root file for future use by the ADD STORAGE AREA clause of the
ALTER DATABASE statement. Storage areas can be added only if there are
storage area slots available. Slots become available after a DROP STORAGE
AREA clause or a RESERVE STORAGE AREA clause is issued.

This feature is additive in nature. In other words, the number of reserved slots
for storage areas cannot be decreased once the RESERVE clause is issued. If
you reserve 10 slots and later reserve 5 slots, you have a total of 15 reserved
slots for storage areas.

You must reserve slots or delete an existing storage area before you can add
new storage areas to the database.

If you do not specify the RESERVE STORAGE AREA clause, the default
number of reserved storage areas is zero.

ROW CACHE IS ENABLED
ROW CACHE IS DISABLED
Specifies whether or not the row caching feature is enabled.

Enabling row caching does not affect database operations until a cache is
created and assigned to one or more storage areas.

When row caching is disabled, all previously created and assigned caches
remain and will be available if row caching is enabled again.

The following conditions must be true in order to use row caches:

• The number of cluster nodes is one

• After-image journaling is enabled

• Fast commit is enabled

• One or more cache slots are reserved

• Row caching is enabled

Use the RMU Dump Header command to check if you have met the
requirements for using row caches. The following command output displays a
warning for every requirement that is not met:

6–56 SQL Statements

ALTER DATABASE Statement

.

.

.
Row Caches...

- Active row cache count is 0

- Reserved row cache count is 1

- Sweep interval is 1 second

- Default cache file directory is ""

- WARNING: Maximum node count is 16 instead of 1

- WARNING: After-image journaling is disabled

- WARNING: Fast commit is disabled
.
.
.

SAME BACKUP FILENAME AS JOURNAL
During execution, the backup server assigns the same name to the backup file
as it does to the journal file. This is a quick form of backup as a new file is
created.

Note

Oracle Corporation recommends that you save the old journal file on
tape or other media to prevent accidental purging of these files.

SECURITY CHECKING
Traditionally Oracle Rdb has performed security checking using the operating
system security layer (for example, the UIC and rights identifiers of the
OpenVMS operating system).

The access control list (ACL) information stored in the database contains a
granted privilege mask and a set of users represented by a unique integer (for
example, a UIC).

There are two modes of security checking:

1. SECURITY CHECKING IS EXTERNAL

SQL Statements 6–57

ALTER DATABASE Statement

This is the default. External security checking recognizes database users
as operating system user identification codes (UICs) and roles as special
rights identifiers or groups. PERSONA support is enabled or disabled as
follows:

• SECURITY CHECKING IS EXTERNAL (PERSONA SUPPORT IS
ENABLED)

Enables the full impersonation of an OpenVMS user. This means the
UIC and the granted right identifiers are used to check access control
list permissions.

• SECURITY CHECKING IS EXTERNAL (PERSONA SUPPORT IS
DISABLED)

Disables the full impersonation of an OpenVMS user. Only the UIC
is used to check access control list permissions. This is the default for
a new database, or for a database converted from a prior version of
Oracle Rdb.

2. SECURITY CHECKING IS INTERNAL

In this mode, Oracle Rdb records users (username and UIC) and roles
(rights identifiers) in the database. The CREATE USER and CREATE
ROLE statements perform this action explicitly, and GRANT will perform
this implicitly. This type of database can now be moved to another system
and is only dependent on the names of the users and roles.

• SECURITY CHECKING IS INTERNAL (ACCOUNT CHECK IS
ENABLED)

The ACCOUNT CHECK clause ensures that Oracle Rdb validates
the current database user with the user name (such as defined with
a CREATE USER statement) stored in the database. This prevents
different users with the same name from accessing the database.
Therefore, this clause might prevent a breach in security.

The ACCOUNT CHECK IS ENABLED clause on OpenVMS forces the
user session to have the same user name and UIC as recorded in the
database.

• SECURITY CHECKING IS INTERNAL (ACCOUNT CHECK IS
DISABLED)

If you specify the ACCOUNT CHECK IS DISABLED clause, then a
user with a matching UIC (also called a profile-id) is considered the
same as the user even if his or her user name is different. This allows
support for multiple OpenVMS users with the same UIC.

6–58 SQL Statements

ALTER DATABASE Statement

SET TRANSACTION MODES
Enables only the modes specified, disabling all other previously defined modes.
This is an offline operation and requires exclusive database access. For
example, if a database is used for read-only access and you want to disable all
other transaction modes, specify the following statement:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> SET TRANSACTION MODES (READ ONLY);

Specifying a negated txn-mode or specifying NONE disables all transaction
usage. Disabling all transaction usage would be useful when, for example, you
want to perform major restructuring of the physical database. Execute the
ALTER DATABASE statement to re-enable transaction modes.

SHARED MEMORY IS SYSTEM
SHARED MEMORY IS PROCESS
SHARED MEMORY IS PROCESS RESIDENT
Determines whether database root global sections (including global buffers
when enabled) are created in system space or process space. The default is
PROCESS.

When you use global sections created in the process space, you and other users
share physical memory and the OpenVMS operating system maps a row cache
to a private address space for each user. As a result, all users are limited
by the free virtual address range and each use a percentage of memory in
overhead. If many users are accessing the database, the overhead can be high.

When many users are accessing the database, consider using SHARED
MEMORY IS SYSTEM. This gives users more physical memory because they
share the system space of memory and there is none of the overhead associated
with the process space of memory.

The default is SHARED MEMORY IS PROCESS.

The SHARED MEMORY clause determines whether database root global
sections (including global buffers when enabled) or whether the cache global
sections are created in system space or process space. The RESIDENT option
extends the PROCESS option by making the global section memory resident.

To enable or disable SHARED MEMORY IS PROCESS RESIDENT, the process
executing the command must be granted the VMS$MEM_RESIDENT_USER
rights identifier. When this feature is enabled, the process that opens the
database must also be granted the VMS$MEM_RESIDENT_USER rights
identifier. Oracle Corporation recommends using the RMU Open command
when utilizing this feature.

SQL Statements 6–59

ALTER DATABASE Statement

SHUTDOWN TIME IS n MINUTES
Specifies the number of minutes the database system will wait after a
catastrophic event before it shuts down the database. The shutdown time
is the period, in minutes, between the point when the after-image journaling
subsystem becomes unavailable and the point when the database is shut
down. During the after-image journaling shutdown period, all database update
activity is stalled.

If notification is enabled with the NOTIFY IS clause, operator messages will be
broadcast to all enabled operator classes.

To recover from the after-image journaling shutdown state and to resume
normal database operations, you must make an .aij file available for use. You
can do this by backing up an existing modified journal file, or, if you have a
journal file reservation available, by adding a new journal file to the after-
image journaling subsystem. If you do not make a journal file available before
the after-image journal shutdown time expires, the database will be shut down
and all active database attachments will be terminated.

The after-image journaling shutdown period is only in effect when a fixed-size
.aij file is used. When a single extensible .aij file is used, the default action is
to shut down all database operations when the .aij file becomes unavailable.

The default is 60 minutes. The minimum value is 1 minute; the maximum
value is 4320 minutes (3 days).

SNAPSHOT ALLOCATION IS snp-pages PAGES
Changes the number of pages allocated for the snapshot file. The default is
100 pages. If you have disabled the snapshot file, you can set the snapshot
allocation to 0 pages.

SNAPSHOT EXTENT IS extent-pages PAGES
SNAPSHOT EXTENT IS (extension-options)
Changes the number of pages of each snapshot or storage area file extent. The
default extent for storage area files is 100 pages.

Specify a number of pages for simple control over the file extent. For greater
control, and particularly for multivolume databases, use the MINIMUM,
MAXIMUM, and PERCENT GROWTH extension options instead.

If you use the MINIMUM, MAXIMUM, and PERCENT GROWTH parameters,
you must enclose them in parentheses.

6–60 SQL Statements

ALTER DATABASE Statement

SNAPSHOT IS ENABLED IMMEDIATE
SNAPSHOT IS ENABLED DEFERRED
Specifies when read/write transactions write database changes to the snapshot
file used by read-only transactions.

The ENABLED IMMEDIATE option is the default and causes read/write
transactions to write copies of rows they modify to the snapshot file, regardless
of whether or not a read-only transaction is active. Although ENABLED
IMMEDIATE is the default, if you set snapshots ENABLED DEFERRED, you
must specify both ENABLED and IMMEDIATE options to return the database
to the default setting.

The ENABLED DEFERRED option lets read/write transactions avoid writing
copies of rows they modify to the snapshot file (unless a read-only transaction
is already active). Deferring snapshot writing in this manner improves the
performance for the read/write transaction. However, read-only transactions
that start after an active read/write transaction starts must wait for all active
read/write users to complete their transactions.

SNAPSHOT IS DISABLED
Specifies that snapshot writing be disabled. Snapshot writing is enabled by
default.

In this mode any READ ONLY transaction will be converted to READ WRITE
mode automatically.

STATISTICS COLLECTION IS ENABLED
STATISTICS COLLECTION IS DISABLED
Specifies whether the collection of statistics for the database is enabled or
disabled. When you disable statistics for the database, statistics are not
displayed for any of the processes attached to the database. Statistics are
displayed using the RMU Show Statistics command.

The default is STATISTICS COLLECTION IS ENABLED. You can disable
statistics using the ALTER DATABASE and IMPORT statements.

For more information on the RMU Show Statistics command, see the Oracle
RMU Reference Manual.

You can enable statistics collection by defining the logical name RDM$BIND_
STATS_ENABLED. For more information about when to use statistics
collection, see the Oracle Rdb7 Guide to Database Performance and Tuning.

SQL Statements 6–61

ALTER DATABASE Statement

storage-area-params-1
storage-area-params-2
Parameters that control the characteristics of the storage area. For more
information on the parameters, see the CREATE STORAGE AREA Clause.

SWEEP INTERVAL IS n SECONDS
Specifies the interval, in seconds, between each Record Cache Server (RCS)
sweep. Allowable values must be in the range from 1 second to 3600 seconds
(1 hour). The default is 1.

The Record Cache Server (RCS) is a detached server process automatically
invoked by the monitor when row caching is active.

A sweep is one full pass through all active row cache areas to write modified
rows back to the database storage areas.

SYNONYMS ARE ENABLED
Adds the optional system table RDB$OBJECT_SYNONYMS that is used for
the CREATE SYNONYM, ALTER . . . RENAME TO and RENAME statements.
The default if omitted is disabled.

THRESHOLD IS number-buffers BUFFERS
This number represents the number of sequential buffer accesses that must be
detected before prefetching is started. The default is four buffers.

If you specify the THRESHOLD option, you must have also specified the
DETECTED ASYNC PREFETCH clause. You receive an error if you attempt
to specify the THRESHOLD option with the ASYNC PREFETCH clause.

TRANSACTION INTERVAL IS number-txns
The TRANSACTION INTERVAL IS clause specifies the size of the transaction
sequence number (TSN) range where number-txns equals the number of TSNs.
Oracle Rdb uses transaction sequence numbers to ensure database integrity.
When you specify NO COMMIT TO JOURNAL OPTIMIZATION, Oracle Rdb
assigns TSNs to users one at a time. When you enable the journal optimization
option, Oracle Rdb preassigns a range of TSNs to each user. Assigning a range
of TSNs means that commit information need not be written to the database
root for each transaction. Oracle Rdb writes all transaction information to the
.aij file except for each user’s allocated TSN range, which it writes to the root
file.

The transaction interval value (the TSN range) must be a number between 8
and 1024. The default value is 256.

6–62 SQL Statements

ALTER DATABASE Statement

In general, if your database has few users or if all user sessions are long,
select a large transaction interval. If your database has many users or if user
sessions are short, select a smaller transaction interval.

txn-modes
Specifies the transaction modes for the database.

Mode Description

Transaction Types

[NO]READ ONLY Allows read-only transactions on the database.
[NO]READ WRITE Allows read/write transactions on the database.
[NO] BATCH
UPDATE

Allows batch-update transactions on the database.
This mode executes without the overhead, or security,
or a recovery-unit journal file. The batch-update
transaction is intended for the initial loading of a
database. Oracle Rdb recommends that this mode be
disabled.

Reserving Modes

[NO] SHARED
[READ | WRITE]

Allows tables to be reserved for shared mode. That is,
other users can work with those tables.

[NO] PROTECTED
[READ | WRITE]

Allows tables to be reserved for protected mode. That
is, other users can read from those tables.

[NO] EXCLUSIVE
[READ | WRITE]

Allows tables to be reserved for exclusive access. That
is, other users are prevented access to those tables,
even in READ ONLY transactions.

ALL Allows other users to work with all tables.
NONE Allows no access to tables.

For detailed information about the txn-modes, see the SET TRANSACTION
Statement.

USER LIMIT IS max-glo-buffers
Specifies the maximum number of global buffers each user allocates. Because
global buffer pools are shared by all users, you must define an upper limit on
how many global buffers a single user can allocate. This limit prevents a user
from defining RDM$BIND_BUFFERS to use all the buffers in the global buffer
pool. The user limit cannot be greater than the total number of global buffers.
The default is 5 global buffers.

SQL Statements 6–63

ALTER DATABASE Statement

Decide the maximum number of global buffers a user can allocate by dividing
the total number of global buffers by the total number of users for whom you
want to guarantee access to the database. For example, if the total number of
global buffers is 200 and you want to guarantee access to the database for at
least 10 users, set the maximum number of global buffers per user to 20.

For maximum performance on a VMScluster system, tune the two global buffer
parameters on each node in the cluster using the RMU Open command with
the Global_Buffers qualifier.

Although you can change the USER LIMIT IS parameter on line, the change
does not take effect until the next time the database is opened.

The NUMBER IS and USER LIMIT IS parameters are the only two buffer
parameters specific to global buffers. They are in effect on a per node basis
rather than a per process basis.

USER ’username’
A character string literal that specifies the operating system user name that
the database system uses for privilege checking. This clause also sets the value
of the SYSTEM_USER value expression.

USING ’password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

WAIT n MINUTES FOR CLOSE
Specifies the amount of time that Oracle Rdb waits before automatically
closing a database. If anyone attaches during that wait time, the database is
not closed.

The default value for n is zero (0) if the WAIT clause is not specified. The
value for n can range from zero (0) to 35,791,394. However, Oracle Rdb does
not recommend using large values.

WORKLOAD COLLECTION IS ENABLED
WORKLOAD COLLECTION IS DISABLED
Specifies whether or not the optimizer records workload information in
the system table RDB$WORKLOAD. The WORKLOAD COLLECTION IS
ENABLED clause creates this system table if it does not exist. If you later
disable workload collection, the RDB$WORKLOAD system table is not deleted,
nor is the data deleted.

6–64 SQL Statements

ALTER DATABASE Statement

A workload profile is a description of the interesting table and column
references used by queries in a database work load. When workload
collection is enabled, the optimizer collects and records these references in
the RDB$WORKLOAD system table. This work load is then processed by the
RMU Collect Optimizer-Statistics command which records useful statistics
about the work load. These workload statistics are used by the optimizer at
run time to deliver more accurate access strategies.

Workload collection is disabled by default.

Usage Notes

• Some database or storage area characteristics can be changed while users,
including yourself, are attached to the database. See Table 6–2 for more
information regarding the database-wide parameters you can modify while
other users are attached to the database. If the characteristic you want to
change cannot be changed while the database is being accessed, you will
get the following error message:

SQL> ATTACH ’FILENAME personnel’;
SQL> ALTER DATABASE FILENAME personnel MULTISCHEMA IS ON;
%RDB-E-LOCK_CONFLICT, request failed due to locked resource
-RDMS-F-LCKCNFLCT, lock conflict on client
SQL> DISCONNECT DEFAULT;
SQL> ALTER DATABASE FILENAME personnel MULTISCHEMA IS ON;

If users are attached to the database when you change a characteristic,
some changes are not visible to those users until they detach and reattach
to the database.

For more information regarding database characteristics that can and
cannot be changed on line, see the Oracle Rdb Guide to Database Design
and Definition.

• The ALTER DATABASE statement is not executed in a transaction context
and, therefore, its effects are immediate and cannot be rolled back or
committed.

• You cannot delete a storage area if it is the DEFAULT storage area, the
LIST STORAGE AREA, or the RDB$SYSTEM storage area.

• When the LOCKING IS PAGE LEVEL or LOCKING IS ROW LEVEL
clause is specified at the database level (using the ALTER DATABASE
or CREATE DATABASE statements), all storage areas are affected (with
the exception of RDB$SYSTEM and the DEFAULT storage area, which is
always set to row-level locking).

SQL Statements 6–65

ALTER DATABASE Statement

• SQL does not journal metadata updates for the following changes to the
database parameters:

Changing the number of users

Changing the number of nodes

Reserving slots for journal files

Reserving slots for storage areas

Unlike most metadata updates, database and storage area updates
complete with an implicit commit operation. This means that you will not
be able to issue a ROLLBACK statement if you make an error in your
ALTER DATABASE statement.

Note

If you plan to change any of the database parameters that are not
journaled, Oracle Corporation recommends that you back up your
database before attempting these changes. If a change that is not
journaled fails for some reason, the database becomes corrupt. If you
backed up your database, you can restore your database from the
backup copy.

• See the Oracle Rdb Guide to Database Design and Definition for a complete
discussion of when to use the IMPORT, EXPORT, and ALTER DATABASE
statements.

• Table 6–1 shows which data definitions can be updated while users are
attached to the database. For more information and restrictions not
included in the Comments column of this table, see the Oracle Rdb
Guide to Database Design and Definition and the Oracle RMU Reference
Manual.

6–66 SQL Statements

ALTER DATABASE Statement

Table 6–1 Updating Data Definitions While Users Are Attached to the
Database

Metadata
Update

Concurrency
Allowed1 Comments

Catalogs
CREATE
DROP

Yes You cannot drop a catalog when there are active transactions
that access the catalog.

Collating
sequences

ALTER
CREATE
DROP

Yes You cannot drop a collating sequence if the database or domain
in the database uses that collating sequence.

Constraints
ALTER
CREATE
DROP
RENAME

Yes You cannot drop a constraint when there are active
transactions that access the tables involved.

Domains
ALTER
CREATE
DROP
RENAME

Yes You cannot alter a domain if stored routines use the domain.

External routines
ALTER
CREATE
DROP
RENAME

Yes Refers to external procedures and functions.

Indexes
CREATE
ALTER
DROP
RENAME

Yes You cannot disable an index or delete an index definition when
there are active transactions that access the tables involved.

Modules
CREATE
DROP
ALTER
RENAME

Yes Modules contain stored procedures and functions.

Outlines
CREATE
DROP
ALTER
RENAME

Yes

1Concurrency Allowed means other users can attach to the database while the metadata update is
being performed. Note that other restrictions, as described in the Comments column of this table,
may apply.

(continued on next page)

SQL Statements 6–67

ALTER DATABASE Statement

Table 6–1 (Cont.) Updating Data Definitions While Users Are Attached to the
Database

Metadata
Update

Concurrency
Allowed1 Comments

Profiles
ALTER
CREATE
DROP
RENAME

Yes

Protection
GRANT
REVOKE

Yes Granting or revoking a privilege takes effect after the user
detaches and attaches to the database again.

Schemas
CREATE
DROP

Yes You cannot drop a schema when there are active transactions
that access the schema.

Roles
CREATE
DROP
ALTER
RENAME

Yes

Storage areas
RESERVE No This change is not journaled.

CREATE
ADD
DROP

Yes Concurrency is allowed if the database root file contains
available slots; that is, slots that have been reserved for
storage areas but not used. Updates are not seen by users
currently attached to the database. New areas are seen
when new users attach to the database after the change is
committed. These metadata operations complete with an
implicit commit operation.

ALTER See
comments

You can modify many of the storage area parameters. See
Table 6–2 for specific information.

Storage maps
ALTER
CREATE
DROP

Yes

Sequences
ALTER
CREATE
DROP
RENAME

Yes

1Concurrency Allowed means other users can attach to the database while the metadata update is
being performed. Note that other restrictions, as described in the Comments column of this table,
may apply.

(continued on next page)

6–68 SQL Statements

ALTER DATABASE Statement

Table 6–1 (Cont.) Updating Data Definitions While Users Are Attached to the
Database

Metadata
Update

Concurrency
Allowed1 Comments

Synonyms
ALTER
CREATE
DROP
RENAME

Yes

Tables
ALTER
CREATE
RENAME
DROP
TRUNCATE

Yes You cannot drop or truncate a table definition when there are
active transactions that use the table.

Triggers
ALTE
CREATE
DROPR
RENAME

Yes You cannot delete a trigger definition when there are active
transactions that use the trigger or that refer to the tables
involved.

User
ALTER
CREATE
DROP
RENAME

Yes

Views
CREATE
DROP
RENAME

Yes Deleting a view does not affect active users until you commit
your transaction, users detach from the database, and then
attach to the database again.

Databases
ALTER See

comments
You can modify many of the database parameters, including
storage area parameters. See Table 6–2 for specific
information.

CREATE
DROP

No These metadata updates complete with an implicit commit
operation. If a user is attached to the database when you
attempt to delete a database, you receive the -SYSTEM-W-
ACCONFLICT, file access conflict error message.

1Concurrency Allowed means other users can attach to the database while the metadata update is
being performed. Note that other restrictions, as described in the Comments column of this table,
may apply.

• Table 6–2 shows which database-wide parameters you can modify while
other users are attached to the database. Remember that you cannot
create or delete a database while any users are attached to it, including
yourself. See the Oracle Rdb Guide to Database Design and Definition
and the Oracle RMU Reference Manual for additional information and
restrictions not included in the Comments column of this table.

SQL Statements 6–69

ALTER DATABASE Statement

Table 6–2 Updating Database-Wide Parameters While Users Are Attached to
the Database

Metadata Update On Line 1 Comments

Root File Parameters

Open mode Yes Updates are not seen until a database open operation is
required.

Wait interval for close Yes Updates do not take effect until the database is opened
again after the change is completed. However, updates are
not seen by users who attached to the database before the
update.

Number of users No This change is not journaled.

Number of nodes No This change is not journaled.

Buffer size No

Number of buffers Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Number of recovery
buffers

Yes Updates take effect when a new database recovery process
begins.

Recovery-unit journal
location

Yes

Global buffers enabled
or disabled

No

Number of global
buffers

Yes Updates do not take effect until the database is opened
again after the change is completed. However, updates are
not seen by users who attached to the database before the
update.

Maximum number of
global buffers per user

Yes Updates do not take effect until the database is opened
again after the change is completed. However, updates are
not seen by users who attached to the database before the
update.

Page transfer Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Adjustable lock
granularity

No

Carry-over locks
enabled or disabled

No

1On Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

6–70 SQL Statements

ALTER DATABASE Statement

Table 6–2 (Cont.) Updating Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1 Comments

Root File Parameters

Galaxy Support No

Lock timeout interval Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Statistics enabled or
disabled

No

Cardinality collection
enabled or disabled

Yes

Workload collection
enabled or disabled

Yes

Asynchronous batch-
writes

Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Asynchronous
prefetch

Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Detected asyn-
chronous prefetch

Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Incremental backup Yes

Lock partitioning No

Metadata changes
enabled or disabled

Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Checksum calculation No

Reserve sequences No

Reserve row cache
slots

No This change is not journaled.

Row cache enabled or
disabled

No

Create or add row
cache

No

1On Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

SQL Statements 6–71

ALTER DATABASE Statement

Table 6–2 (Cont.) Updating Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1 Comments

Root File Parameters

Alter row cache No

Delete row cache No

Row cache attributes No

Snapshot files enabled
or disabled

No

Snapshot files
immediate or deferred

No

Snapshot checksum
calculation

No

Reserve journal No This change is not journaled.

Journaling enabled or
disabled

No

Logminer support No

Add journal Yes Online changes are allowed if the database root file contains
available slots; that is, slots that have been reserved for
journal files but not used.

Alter journal Yes

Delete journal Yes You cannot delete a journal file while it is in use.

Journal name or file
name

No

Journal allocation Yes

Journal backup server Yes

Journal backup file
name

Yes

Journal backup file
name edit string

Yes

Journal cache file
name

Yes

Journal extent Yes

Journal fast commit No

1On Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

6–72 SQL Statements

ALTER DATABASE Statement

Table 6–2 (Cont.) Updating Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1 Comments

Root File Parameters

Journal checkpoint
interval

No

Journal checkpoint
time

No

Journal commit to
journal optimization

No

Journal transaction
interval

No

Journal log server Yes

Journal overwrite Yes

Journal shutdown
time

Yes

Storage Area Parameters

Reserve storage area No This change is not journaled.

Specify default
storage area

Yes

Read or write
attribute

Yes Requires exclusive access to the area.

Allocation Yes

Extension enabled or
disabled

Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Extension options Yes

Lock-level options No

Thresholds Yes Requires exclusive access to the area.

Snapshot file
allocation

Yes Truncating snapshot file blocks read-only transactions.

Snapshot checksum
allocation

No

1On Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

SQL Statements 6–73

ALTER DATABASE Statement

Table 6–2 (Cont.) Updating Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1 Comments

Storage Area Parameters

Snapshot file
extension options

Yes

SPAMs enabled or
disabled

Yes Requires exclusive access to the area.

Checksum calculation No

Security Parameters

Audit file name Yes Use the RMU Set Audit command.

Alarm name Yes Use the RMU Set Audit command.

Audit enabled or
disabled

Yes Use the RMU Set Audit command.

Alarm enabled or
disabled

Yes Use the RMU Set Audit command.

Audit FIRST flag Yes Use the RMU Set Audit command.

Audit FLUSH flag Yes Use the RMU Set Audit command.

Audit event class flags Yes Use the RMU Set Audit command.

1On Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

• You cannot specify a snapshot file name for a single-file database.

The SNAPSHOT FILENAME clause specified outside the CREATE
STORAGE AREA clause is used to provide a default for subsequent
CREATE STORAGE AREA statements. Therefore, this clause does not
allow you to create a separate snapshot file for a single-file database (a
database without separate storage areas).

When you create a single-file database, Oracle Rdb does not store the file
specification of the snapshot file. Instead, it uses the file specification of
the root file (.rdb) to determine the file specification of the snapshot file.

If you want to place the snapshot file on a different device or directory,
Oracle Rdb recommends that you create a multifile database.

6–74 SQL Statements

ALTER DATABASE Statement

However, you can work around the restriction on OpenVMS platforms by
defining a search list, for a concealed logical name. (However, do not use
a nonconcealed rooted logical. Database files defined with a nonconcealed
rooted logical can be backed up, but do not restore as expected.)

To create a database with a snapshot file on a different device or directory:

1. Define a search list using a concealed logical name. Specify the location
of the root file as the first item in the search list and the location of the
snapshot file as the second item.

2. Create the database using the logical name for the directory
specification.

3. Copy the snapshot file to the second device or directory.

4. Delete the snapshot file from the original location.

If you are doing this with an existing database, close the database using
the RMU Close command before defining the search list, and open the
database using the RMU Open command after deleting the original
snapshot file. Otherwise, follow the preceding steps.

An important consideration when placing snapshot and database files on
different devices is the process of backing up and restoring the database.
Use the RMU Backup command to back up the database. You can then
restore the files by executing the RMU Restore command. Copy the
snapshot file to the device or directory where you want it to reside, and
delete the snapshot file from the location to which it was restored. For
more information, see the Oracle RMU Reference Manual.

• To move the database root file, storage areas, and snapshot files to different
disks, use the RMU Move_Area command. To move database files to
another system, use the RMU Backup and RMU Restore commands. For
more information about Oracle RMU commands, see the Oracle RMU
Reference Manual.

• An exception message is returned if the RDB$SYSTEM storage area is
read-only and you try to ready a table in exclusive or batch-update mode.

Exclusive access to a table or index must always write to the
RDB$SYSTEM storage area because this type of access does not write the
‘‘before’’ images of the modified data into the snapshot file. Consequently,
a read-only access to the same table or index must have a way of knowing
whether or not the snapshot file can produce the data it requires.

SQL Statements 6–75

ALTER DATABASE Statement

Each exclusive access must record that it is not maintaining snapshots on
a per index or per table basis, as this is the unit of data for which Oracle
Rdb permits the setting of the access mode. The natural location to store
the fact that snapshots are not being maintained is with the table or index
definition because the definition must be accessed when the table or index
is reserved. Storing it elsewhere incurs additional overhead.

The table and index definitions are stored in the RDB$SYSTEM area.
Consequently, if the RDB$SYSTEM area is set to read-only, you are
not permitted to access any table or index in the exclusive mode. This
condition affects all database access.

• Oracle Rdb uses the extensible after-image journaling feature as the
default until you specifically add another journal file.

• Adding one journal file to an existing extensible journal file automatically
converts it to a fixed-size journal file. See the Oracle Rdb Guide to
Database Design and Definition for additional information.

• Because the creation of a journal file does not cause an immediate switch
of journal files, Oracle Rdb recommends that you do not delete journal files.

• Oracle Rdb recommends that each .aij file be located on devices separate
from each other and from other database files so that you can recover from
a hardware or software failure.

• Exclusive database access is required for the following operations:

– Reserving after-image journal files

– Enabling after-image journal files

– Disabling after-image journal files

– Reserving storage areas

• You do not need exclusive database access to add, delete, or alter .aij files
or storage areas.

However, when you add a storage area with a page size that is smaller
than the smallest storage area page size, you must have exclusive access to
the database.

• The system allows you to disable journaling, reserve additional slots, and
then continue processing without re-enabling the journaling feature. If you
do this, the system tells you that your database is not recoverable. Be sure
to enable journaling before any further processing.

• Use the SHOW statement or the RMU Dump command with the Header
qualifier to review your current journaling and storage area status.

6–76 SQL Statements

ALTER DATABASE Statement

• Use the RMU Backup command to back up the database.

• There is no tape support for the AIJ backup server (ABS).

• Adding and deleting storage areas are online operations (not requiring
exclusive database access). Reserving storage area slots is an offline
operation (requiring exclusive database access). Therefore, you cannot
specify an ADD or DROP STORAGE AREA clause and a RESERVE
STORAGE AREA clause in the same ALTER DATABASE statement. For
example:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> RESERVE 2 STORAGE AREAS
cont> ADD STORAGE AREA TEST_ONE
cont> FILENAME mf_pers_test;
%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database
parameter block (DPB)
-RDMS-E-CONFRESERVE, RESERVE cannot be used with ADD/DROP in the same
ALTER DATABASE command

• Use one of the following Oracle RMU commands to change some of the root
characteristics of a single-file database that can be directly altered for a
multifile database:

– Restore

– Copy

– Move_Area

• The ADD CACHE automatically assigns the cache to any table or index
of the same name. You must use the CACHE USING clause with the
ADD STORAGE AREA or ALTER STORAGE AREA clauses of the ALTER
DATABASE statement to assign the cache to a storage area.

• The product of the CACHE SIZE and the ROW LENGTH settings
determines the amount of memory required for the row cache (some
additional overhead and rounding up to page boundaries is performed by
the database system). Use RMU to display the required memory.

• A row cache is shared by all processes attached to the database on any
node.

• The following are requirements when using the row caching feature:

– Fast commit must be enabled

– Number of cluster nodes must equal 1 or SINGLE INSTANCE must be
specified in the NUMBER OF CLUSTER NODES clause.

SQL Statements 6–77

ALTER DATABASE Statement

• When you alter the row length of a row cache Oracle Rdb rounds the
specified value up to the next value divisible by four. For example, if you
alter the row length to 30, Oracle Rdb assigns 32.

• The DICTIONARY IS REQUIRED flag is cleared if you specify the
DICTIONARY IS NOT USED clause.

• You must use the FILENAME clause, and not the PATHNAME clause,
when removing the link between the repository and the database with the
DICTIONARY IS NOT USED clause.

• The EDIT STRING options to the BACKUP FILENAME clause are
appended to the backup file name in the order in which you specify them.
For example, the following portion of syntax creates an OpenVMS file with
the name BACKUP160504233.AIJ when journal 3 is backed up at 4:05 in
the afternoon on April 23.

.

.

.
cont> BACKUP FILENAME ’DISK2:[DIRECTORY2]BACKUP’
cont> (EDIT STRING IS HOUR + MINUTE + MONTH + DAY + SEQUENCE)

.

.

.

You can make the file name (BACKUP$1605_0423_3.AIJ) more readable
by inserting string literals between each edit string option as shown in the
following example:

.

.

.
cont> BACKUP FILENAME ’DISK2:[DIRECTORY2]BACKUP’
cont> (EDIT STRING IS ’$’ + HOUR + MINUTE + ’_’ +
cont> MONTH + DAY + ’_’ + SEQUENCE)

.

.

.
SQL> SHOW JOURNAL BACKUP;

BACKUP
Journal File: DISK1:[DIRECTORY1]BACKUP.AIJ;1
Backup File: DISK2:[DIRECTORY2]BACKUP.AIJ;
Edit String: (’$’+HOUR+MINUTE+’_’+MONTH+DAY+’_’+SEQUENCE)

• Setting the NO BATCH UPDATE or NO EXCLUSIVE transaction modes
prevents various transaction types on IMPORT and can effectively prevent
the import from succeeding.

6–78 SQL Statements

ALTER DATABASE Statement

• Oracle Rdb prevents user specification of the disabled transactions modes
when the transaction parameter block (TPB) is processed.

• The number of reserved slots for sequences cannot be decreased.

• If you do not specify the RESERVE n CACHE SLOTS clause, the default
number of cache slots is 32.

• The RDB$PROFILES system relation is used to record users and roles
created with the CREATE USER and CREATE ROLE statements. When a
database is created, the creator is automatically added as a user.

• The PRESTARTED TRANSACTION attribute in the database will be used
unless overridden by the RDMS$PRESTART_TXN logical name, or the
PRESTARTED TRANSACTION clause on an explicit ATTACH, CONNECT,
or DECLARE ALIAS statement. However, the time value specified for the
database is used if prestarted transactions are enabled.

• To enable or disable Galaxy support, the process executing the command
must hold the SHMEM privilege. When Galaxy is enabled, the process
that opens the database must have the SHMEM privilege enabled. Oracle
Corporation recommends using the RMU Open command when utilizing
this feature.

• The following usage notes apply to the DROP STORAGE AREA CASCADE
clause:

– If the storage area is the only area in the storage map, Oracle Rdb
deletes the storage area and all referencing objects.

– If the storage map that refers to the area is strictly partitioned, Oracle
Rdb deletes the storage area and all referencing objects, even if the
storage map refers to more than one area.

– If the storage area contains only part of an index, Oracle Rdb does not
delete the area because doing so makes the database inconsistent.

– If a hashed index and a table are in the same storage area and the
mapping for the hashed index is not the same as the mapping for the
table, Oracle Rdb does not delete the storage area.

– If a storage area contains a table that contains constraints, Oracle Rdb
only deletes the area if after doing so, the database remains consistent.

– An index that is not partitioned and resides entirely in the storage
area being dropped will be deleted using CASCADE semantics (and
therefore will invalidate any query outlines that refer to that index).

SQL Statements 6–79

ALTER DATABASE Statement

– The NOT NULL, PRIMARY KEY, and UNIQUE constraints for affected
tables are ignored by the DROP STORAGE AREA CASCADE clause
because validation of these constraints is not necessary.

These types of constraints are not affected by removal of rows
from the table. This can save considerable I/O and elapsed time
when you perform a DROP STORAGE AREA CASCADE operation.
However, CHECK and FOREIGN constraints on the affected table and
referencing tables are still evaluated.

– When DROP STORAGE AREA CASCADE is executing, it
logs debugging messages to the standard output device or the
RDMS$DEBUG_FLAGS_OUTPUT log file on OpenVMS.

You can enable logging of the debug messages using the logical name
RDMS$SET_FLAGS, which accepts the same input as the SQL SET
FLAGS statement. For example:

$ DEFINE RDMS$SET_FLAGS "STOMAP_STATS, INDEX_STATS, ITEM_LIST"

The SET FLAGS OPTIONS shown in the preceding example enables
the following debug output:

* STOMAP_STATS displays the processing of storage maps for any
tables that refer to the dropped storage area.

* INDEX_STATS displays the processing of any indices which
reference the dropped storage area,

* ITEM_LIST displays the names of any constraints that require
processing.

The output includes the discovered tables and indexes, some decision-
point information (does an index need to be deleted, does a partition
need to be scanned, and so on), and I/O statistics for the storage map
pruning operations.

Part of the DROP STORAGE AREA CASCADE operation may include
deleting tables and indexes. These are processed internally as DROP
TABLE CASCADE and DROP INDEX CASCADE operations. However,
by the time these commands execute, all references to the dropped
storage area will have been removed. Therefore, in many cases the
DROP TABLE or DROP INDEX statement only cleans up the metadata
definition; there is no need to scan the storage area.

– The time required to delete a storage area file depends on the size of
the directory file, the file allocation, and the number of extents made by
the file system to grow the file. If the ERASE ON DELETE attribute
is enabled on the disk, then this must also be factored into the time

6–80 SQL Statements

ALTER DATABASE Statement

calculations (allow time for the file system to overwrite the file with an
erase pattern).

– Note that the read/write I/O statistics are output only if the database
has statistics collection enabled. Statistics collection might be disabled
if the logical name RDM$BIND_STATS_ENABLED has been set to 0, of
if an ALTER DATABASE...STATISTICS COLLECTION IS DISABLED
statement has been issued.

• By default, notification of area extends is disabled. To enable this
notification, define the logical name RDM$BIND_NOTIFY_STORAGE_
AREA_EXTEND to 1. This will result in storage area extend events being
notified. The message will be sent to CENTRAL and CLUSTER operators,
as well as any other operators named in the NOTIFY IS ENABLED clause.

The logical name RDM$BIND_NOTIFY_STORAGE_AREA_EXTEND
should be defined system-wide so that any process extending an area will
cause the notification to occur.

• The ALTER DATABASE statement performs two classes of functions:

Changing the database root structures in the .RDB file

Modifying the system metadata in the RDB$SYSTEM storage area.

The first class of changes do not require a transaction to be active.
However, the second class does require that a transaction be active. Oracle
Rdb does not currently support the mixing of these two classes of ALTER
DATABASE clauses.

When you mix clauses that fall into both classes, the following error
message is displayed, and the ALTER DATABASE statement fails.

DDLDONOTMIX the {SQL-syntax} clause can not be used with some ALTER DATABASE clauses

For example:

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used
cont> add storage area JOB_EXTRA filename JOB_EXTRA
RDB-F-BAD_DPB_CONTENT, invalid database parameters in the database parameter
%RDMS-E-DDLDONOTMIX, the "DICTIONARY IS NOT USED" clause can not be used with
some ALTER DATABASE clauses

The following clauses modify system metadata, but may not appear with
other clauses such as ADD STORAGE AREA or ADD CACHE:

DICTIONARY IS [NOT] REQUIRED

1 You may not specify both SYNONYMS ARE ENABLED and MULISCHEMA IS ON
for the same database.

SQL Statements 6–81

ALTER DATABASE Statement

DICTIONARY IS NOT USED

MULTISCHEMA IS { ON | OFF } 1

CARDINALITY COLLECTION IS { ENABLED | DISABLED }

METADATA CHANGES ARE { ENABLED | DISABLED }

WORKLOAD COLLECTION IS { ENABLED | DISABLED }

SYNONYMS ARE ENABLED 1

SECURITY CHECKING IS { INTERNAL | EXTERNAL }

If the DDLDONOTMIX error is displayed, then restructure the ALTER
DATABASE into two statements, one for each class of actions.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used;
SQL> alter database filename MF_PERSONNEL
cont> add storage area JOB_EXTRA filename JOB_EXTRA;

• A node specification may only be specified for the root FILENAME clause
of the ALTER DATABASE statement.

This means that the directory or file specification specified with the
following clauses can only be a device, directory, file name, and file type:

LOCATION clause of the ROW CACHE IS ENABLED, RECOVERY
JOURNAL, ADD CACHE, and CREATE CACHE clauses

SNAPSHOT FILENAME clause

FILENAME and SNAPSHOT FILENAME clauses of the ADD
STORAGE AREA and CREATE STORAGE AREA clauses

BACKUP FILENAME clause of the JOURNAL IS ENABLED, ADD
JOURNAL, and ALTER JOURNAL clauses

BACKUP SERVER and CACHE FILENAME clauses of the JOURNAL
IS ENABLED clause

FILENAME clause of the ADD JOURNAL clause

• Very large memory (VLM) allows Oracle Rdb to use as much physical
memory as is available on your system and to dynamically map it to the
virtual address space of database users. VLM provides access to a large
amount of physical memory through small virtual address windows. Even
though VLM is defined in physical memory, the virtual address windows
are defined and maintained in each user’s private virtual address space.
Global buffers in VLM are fully resident, or pinned, in memory and do not
directly affect the quotas of the working set of a process.

6–82 SQL Statements

ALTER DATABASE Statement

The number of virtual address ‘‘windows’’ per process is based on the global
buffers maximum ’allocate set’ parameter specified with the USER LIMIT
IS value of the ALTER DATABASE . . . GLOBAL BUFFERS command and
is not directly adjustable.

The LARGE MEMORY parameter of the ALTER DATABASE . . . GLOBAL
BUFFERS command is used to specify that global buffers are to be created
in very large memory:

SQL> ALTER DATABASE FILENAME ’MYBIGDB.RDB’
cont> GLOBAL BUFFERS ARE ENABLED
cont> (NUMBER IS 250000,
cont> USER LIMIT IS 500,
cont> LARGE MEMORY IS ENABLED);

It is important that you consider the amount of memory available on
your system before you start using VLM for global buffers. On OpenVMS
systems, you can use the DCL command SHOW MEMORY/PHYSICAL
to check the availability and usage of physical memory. This command
displays information on how much memory is used and how much is free.
The free memory is available for VLM global buffers in addition to user
applications.

The total number of global buffers per database is limited to 524,288 and
the maximum buffer size is 64 blocks. This yields a global buffer maximum
of 16gb (2,097,152 Alpha pages). This restriction may be relaxed in future
releases of Oracle Rdb.

Refer to the Oracle Rdb7 Guide to Database Performance and Tuning for
additional information about the global buffers feature.

Examples

Example 1: Changing a read/write storage area to a read-only storage area

This example changes the SALARY_HISTORY storage area from a read/write
storage area to a read-only storage area.

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA salary_history
cont> READ ONLY;

Example 2: Adding multiple, fixed-size journal files

This example demonstrates reserving slots for journal files, enabling the
journaling feature, and adding multiple, fixed-size journal files.

SQL Statements 6–83

ALTER DATABASE Statement

SQL> CREATE DATABASE FILENAME test
cont> RESERVE 5 JOURNALS
cont> CREATE STORAGE AREA sa_one
cont> ALLOCATION IS 10 PAGES;
SQL> DISCONNECT ALL;
SQL>
SQL> ALTER DATABASE FILENAME test
cont> JOURNAL IS ENABLED
cont> ADD JOURNAL AIJ_ONE
cont> FILENAME aij_one
cont> BACKUP FILENAME aij_one
cont> ADD JOURNAL AIJ_TWO
cont> FILENAME aij_two
cont> BACKUP FILENAME aij_two
cont> ;

You should place journal files and backup files on disks other than those that
contain the database.

Example 3: Reserving and using slots for storage areas

This example demonstrates reserving slots for storage areas and adding
storage areas to the database that utilizes those slots. Use the SHOW
DATABASE statement to see changes made to the database.

SQL> CREATE DATABASE FILENAME sample
cont> RESERVE 5 STORAGE AREAS
cont> CREATE STORAGE AREA RDB$SYSTEM
cont> FILENAME sample_system
cont> --
cont> -- Storage areas created when the database is created do not use
cont> -- the reserved storage area slots because this operation is being
cont> -- executed off line.
cont> --
cont> ;
%RDMS-W-DOFULLBCK, full database backup should be done to ensure future
recovery
SQL> --
SQL> -- Reserving storage area slots is not a journaled activity.
SQL> --
SQL> -- To use the reserved slots, you must alter the database and
SQL> -- add storage areas.
SQL> --
SQL> DISCONNECT ALL;
SQL> ALTER DATABASE FILENAME sample
cont> ADD STORAGE AREA SAMPLE_1
cont> FILENAME sample_1
cont> ADD STORAGE AREA SAMPLE_2
cont> FILENAME sample_2;

Example 4: Reserving Slots for Sequences

6–84 SQL Statements

ALTER DATABASE Statement

This example shows that reserving extra sequences in the database adds to the
existing 32 that are provided by default, and the count rounded up to the next
multiple of 32 (that is, 64).

$ SQL$ ALTER DATABASE FILENAME MF_PERSONNEL RESERVE 10 SEQUENCES;
%RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery
$ RMU/DUMP/HEADER=SEQUENCE MF_PERSONNEL
*--
* Oracle Rdb V7.1-200 15-AUG-2003 14:54:26.55
*
* Dump of Database header
* Database: USER2:[DOCS.WORK]MF_PERSONNEL.RDB;1
*
*--

Database Parameters:
Root filename is "USER2:[DOCS.WORK]MF_PERSONNEL.RDB;1"
Sequence Numbers...
.
.
.
Client sequences...
- 64 client sequences have been allocated
- 0 client sequences in use

Example 5: Adding and Enabling a Row Cache on OpenVMS

The MF_PERSONNEL database is altered to add a row cache, apply it to
several storage areas and enable row caching. The example further assumes
that after image journals have already been defined for the database, they are
required for the JOURNAL IS ENABLED clause to succeed.

SQL Statements 6–85

ALTER DATABASE Statement

SQL> /*
***> Prepare the database for ROW CACHE, include extra
***> capacity for later additions
***> */
SQL> alter database
cont> filename MF_PERSONNEL
cont> number of cluster nodes is 1
cont> journal is ENABLED (fast commit is enabled)
cont> reserve 20 cache slots
cont> row cache is ENABLED
cont>
cont> /*
***> Create a physical cache for all the employee rows
***> */
cont> add cache EMPIDS_RCACHE
cont> shared memory is SYSTEM
cont> row length is 126 bytes
cont> cache size is 204 rows
cont> checkpoint updated rows to database
cont>
cont> /*
***> Apply the cache to each of the relevant storage areas
***> */
cont> alter storage area EMPIDS_LOW
cont> cache using EMPIDS_RCACHE
cont> alter storage area EMPIDS_MID
cont> cache using EMPIDS_RCACHE
cont> alter storage area EMPIDS_OVER
cont> cache using EMPIDS_RCACHE
cont> ;
%RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery

Example 6: Establishing a Timeout Value for Prestarted Transactions

SQL> ALTER DATABASE
cont> FILENAME SAMPLE
cont> PRESTARTED TRANSACTIONS ARE ENABLED
cont> (WAIT 90 SECONDS FOR TIMEOUT)
cont> ;

6–86 SQL Statements

ALTER DATABASE Statement

Example 7: Altering a Database Specifying the SINGLE INSTANCE Option

This example prepares a database to be run in a 4 node GALAXY cluster. The
SINGLE INSTANCE clause is used to enable special optimizations that are
available because of the galaxy shared memory.

SQL> alter database
cont> filename MF_PERSONNEL
cont> galaxy support is ENABLED
cont> number of cluster nodes is 4 (single instance);

Example 8: Disabling storage if snapshot rows

The following example demonstrates using SQL to modify the ‘‘C1’’ cache to
disable storage of snapshot rows in cache and to modify the ‘‘C5’’ cache to
enable storage of snapshot rows in the cache with a snapshot cache size of
12345 rows:

SQL> ALTER DATABASE FILE EXAMPLE_DB
cont> ALTER CACHE C1
cont> ROW SNAPSHOT IS DISABLED;
cont> ALTER CACHE C5
cont> ROW SNAPSHOT IS ENABLED (CACHE SIZE IS 12345 ROWS);

Example 9: Using the SWEEP INTERVAL clause

Here is an example of using the SWEEP INTERVAL clause.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ROW CACHE IS ENABLED (SWEEP INTERVAL IS 100 seconds)
cont> ;
SQL> attach ’filename MF_PERSONNEL’;
SQL> show database rdb$dbhandle
Default alias:

Oracle Rdb database in file MF_PERSONNEL
.
.
.

Row Cache is Enabled
Row cache: sweep interval is 100 seconds
Row cache: No Location
Row cache: checkpoint updated rows to backing file

.

.

.

SQL Statements 6–87

ALTER DOMAIN Statement

ALTER DOMAIN Statement

Alters a domain definition.

The ALTER DOMAIN statement lets you change the character set, data type,
optional default value, optional collating sequence, or optional formatting
clauses associated with a domain name. Any table or view definitions that
refer to that domain reflect the changes.

Environment

You can use the ALTER DOMAIN statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER DOMAIN <domain-name>
IS data-type

SET DEFAULT value-expr
DROP DEFAULT

COLLATING SEQUENCE IS <collation-name>
NO COLLATING SEQUENCE

domain-constraint sql-and-dtr-clause

6–88 SQL Statements

ALTER DOMAIN Statement

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
FLOAT
NUMBER

(<p>)
* , <d>

LIST OF BYTE VARYING
(<n>) AS BINARY

AS TEXT
DECIMAL
NUMERIC (<n>)

, <n>
REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
CHARACTER (<n>) CHARACTER SET char-set-name
CHAR VARYING
CHARACTER VARYING
VARCHAR (<n>)
VARCHAR2 CHARACTER SET char-set-name
LONG VARCHAR
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
RAW (<n>)
LONG

RAW

SQL Statements 6–89

ALTER DOMAIN Statement

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

literal =

numeric-literal
string-literal
date-time-literal
interval-literal

domain-constraint =

ADD CHECK (predicate) NOT DEFERRABLE
DROP ALL CONSTRAINTS

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS <literal>
DATATRIEVE

NO QUERY HEADER
NO EDIT STRING
NO QUERY NAME FOR DTR
NO DEFAULT VALUE DATATRIEVE
COMMENT IS <quoted-string>

/
RENAME TO <new-name>

6–90 SQL Statements

ALTER DOMAIN Statement

Arguments

char-data-types
A valid SQL character data type. For more information on character data
types, see Section 2.3.1.

character-set-name
A valid character set name. For a list of allowable character set names, see
Section 2.1.

COLLATING SEQUENCE IS collation-name
Specifies a new collating sequence for the named domain.

The OpenVMS National Character Set (NCS) utility provides a set of
predefined collating sequences and also lets you define collating sequences
of your own. The COLLATING SEQUENCE clause accepts both predefined
and user-defined NCS collating sequences.

Before you use the COLLATING SEQUENCE clause in an ALTER DOMAIN
statement, you must first specify the NCS collating sequence for SQL using the
CREATE COLLATING SEQUENCE statement. The sequence name argument
in the COLLATING SEQUENCE clause must be the same as the sequence
name in the CREATE COLLATING SEQUENCE statement.

COMMENT IS ’string’
Adds a comment about the domain. SQL displays the text of the comment
when it executes a SHOW DOMAIN statement. Enclose the comment in single
quotation marks (’) and separate multiple lines in a comment with a slash
mark (/).

date-time-data-types
A data type that specifies a date, time, or interval. For more information on
date-time data types, see Section 2.3.2.

DEFAULT value-expr
Provides a default value for a domain.

You can use any value expression including subqueries, conditional, character,
date/time, and numeric expressions as default values. See Section 2.6 for more
information about value expressions.

For more information about NULL, see Section 2.6.1 and the Usage Notes
following this Arguments list.

SQL Statements 6–91

ALTER DOMAIN Statement

The value expressions described in Section 2.6 include DBKEY and aggregate
functions. However, the DEFAULT clause is not a valid location for referencing
a DBKEY or an aggregate function. If you attempt to reference either, you
receive a compile-time error.

If you do not specify a DEFAULT for a column, it inherits the DEFAULT from
the domain. If you do not specify a default for either the column or domain,
SQL assigns NULL as the default value.

domain-constraint
Adds or modifies a constraint for the existing named domain.

Domain constraints specify that columns based on the domain contain only
certain data values or that data values can or cannot be null.

Use the CHECK clause to specify that a value must be within a specified range
or that it matches a list of values. When you specify a CHECK clause for a
domain constraint, you ensure that all values stored in columns based on the
domain are checked consistently.

To refer to the values of all columns of a domain constraint, use the VALUE
keyword. For example:

SQL> CREATE DOMAIN dom1 CHAR(1)
cont> CHECK (VALUE IN (’F’,’M’))
cont> NOT DEFERRABLE;

For any dialect other than SQL99, SQL92, ORACLE LEVEL 1 or ORACLE
LEVEL 2, you must specify that domain constraints are NOT DEFERRABLE.

When you add (or modify) a domain constraint, SQL propagates the new
constraint definition to all the columns that are based on the domain. If
columns that are based on the domain contain data that does not conform to
the constraint, SQL returns the following error:

%RDB-E-NOT_VALID, validation on field DATE_COL caused operation to fail

domain-name
The name of a domain you want to alter. The domain name must be unique
among domain names in the database.

DROP DEFAULT
Deletes (drops) the default value of a domain.

IS data-type
A valid SQL data type. For more information on data types, see Section 2.3.

6–92 SQL Statements

ALTER DOMAIN Statement

NO COLLATING SEQUENCE
Specifies that the named domain uses the standard default collating sequence,
that is, ASCII. Use the NO COLLATING SEQUENCE clause to override the
collating sequence defined for the schema in the CREATE SCHEMA or ALTER
SCHEMA statement, or the domain in the CREATE DOMAIN statement.

RENAME TO
Changes the name of the domain being altered. See the RENAME Statement
for further discussion. If the new name is the name of a synonym then an
error will be raised.

The RENAME TO clause requires synonyms be enabled for this database.
Refer to the ALTER DATABASE Statement SYNONYMS ARE ENABLED
clause. Note that these synonyms may be deleted if they are no longer used by
database definitions or applications.

SET DEFAULT
Provides a default value for a column if the row that is inserted does not
include a value for that column. A column default value overrides a domain
default value. If you do not specify a default value, SQL assigns NULL as the
default value. For more information about NULL, see Section 2.6.1 and the
Usage Notes following this Arguments list.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. For more information on
the formatting clauses, see Section 2.5.

value-expr
Specifies the default value of a domain.

Usage Notes

• You cannot alter a domain definition unless you have ALTER privilege for
the database that includes the domain.

• Because Oracle Rdb creates dependencies between stored procedures and
metadata (like domains) on which they are compiled and stored, you
cannot alter a domain if the domain is used in a parameter list of a stored
procedure. However, you can alter a domain if that domain is referenced
within the procedure block. See the example in this section about creating
stored procedure domain dependencies and the effect this has on the
ALTER DOMAIN statement.

SQL Statements 6–93

ALTER DOMAIN Statement

• The ALTER DOMAIN statement lets you change the data type, optional
default value, optional collating sequence, or optional formatting clauses
for all columns defined using the domain by changing the domain itself.
For example, if you want to change the data type for EMPLOYEE_ID from
CHAR(5) to CHAR(6), you need only alter the data type for ID_DOM. You
do not have to alter the data type for the column EMPLOYEE_ID in the
tables DEGREES, EMPLOYEES, JOB_HISTORY, or SALARY_HISTORY,
nor do you have to alter the column MANAGER_ID in the DEPARTMENTS
table. (However, if the EMPLOYEE_ID domain is referred to in an index
or view definition, see the next note.)

• You cannot issue an ALTER DOMAIN statement changing the data type
or collating sequence of a domain that is referred to in an index definition.
To change the data type or collating sequence in such cases, you must first
delete the index, change the domain, then define the index again.

• The data type of a value specified in the DEFAULT clause must be the
same data type as the column in which it is defined. If you forget to specify
the data type, SQL issues an error message, as shown in the following
example:

SQL> CREATE DOMAIN TIME_DOM IS TIME (2) DEFAULT ’00:00:00.00’ ;
%SQL-F-DEFVALINC, You specified a default value for TIME_DOM which is
inconsistent with its data type
SQL> CREATE DOMAIN TIME_DOM IS TIME (2) DEFAULT TIME ’00:00:00.00’ ;

• The ALTER DOMAIN statement allows you to change the character
set associated with a domain name. However, if this is done after data is
entered into a table using the domain name, SQL returns a data conversion
error when you try to select rows from that table.

• You can specify the national character data type by using the NCHAR,
NATIONAL CHAR, NCHAR VARYING, or NATIONAL CHAR VARYING
data types. The national character data type is defined by the database
national character set when the database is created. For more information
on national character data types, see Section 2.3.

• You can specify the length of the data type in characters or octets.
By default, data types are specified in octets. By preceding the
ALTER DOMAIN statement with the SET CHARACTER LENGTH
’CHARACTERS’ statement, you change the length to characters. SET
DIALECT also changes the default character length. For more information,
see the SET CHARACTER LENGTH Statement and the SET DIALECT
Statement.

6–94 SQL Statements

ALTER DOMAIN Statement

• You should consider what value, if any, you want to use for the default
value for a domain. You can use a value such as NULL or ‘‘Not Applicable’’
that clearly demonstrates that no data was inserted into a column based
on that domain. If a column usually contains a particular value, you could
use that value as the default. For example, if most company employees
live in the same state, you could make that state the default value for the
STATE_DOM column.

A default value specified for a column overrides a default value specified
for the domain.

To remove a default value, use the DROP DEFAULT clause.

If you change or add a default value for a domain, the change has no effect
on any existing data in the database; that is, the rows already stored in the
database with columns that contain the old default value are not changed.

• Changes you make to domains created with the FROM clause (based on
a repository definition) can affect other applications. If the database was
declared with the PATHNAME clause, changes made with the ALTER
DOMAIN statement are immediately written to the repository record or
field definitions. If the database was declared with the FILENAME clause,
the changes are written to the repository when the next INTEGRATE
SCHEMA . . . ALTER DICTIONARY statement is issued.

The changes affect applications and other databases that use the same
repository definition when the application recompiles or the database
integrates with the repository.

For this reason, use caution when you alter domains that are based on
repository definitions. Make sure that changes you make through ALTER
DOMAIN statements do not have unintended effects on other users or
applications that share the repository definitions.

• You must execute the ALTER DOMAIN statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a transaction with characteristics specified in
the most recent DECLARE TRANSACTION statement.

• Suppose you perform an ALTER DOMAIN operation that causes a
conversion error on retrieval of a record. In an attempt to avoid the
error, you might try to delete the record. This will not work because the
delete operation attempts to do the same incorrect conversion.

A workaround to this problem is to alter or change the domain back to the
original data type, and then remove or change the offending records. Then,
you can use the ALTER DOMAIN statement to alter the domain to the new
required data type.

SQL Statements 6–95

ALTER DOMAIN Statement

• When adding a domain constraint, the predicate cannot contain subqueries
and cannot refer to another domain.

• You can only specify one constraint for each domain.

• The CHECK constraint syntax can reference the VALUE keyword or the
domain name. For example:

SQL> -- The CHECK constraint can reference the VALUE keyword.
SQL> --
SQL> ALTER DOMAIN D1 INTEGER
cont> ADD CHECK (VALUE > 10)
cont> NOT DEFERRABLE;
SQL> SHOW DOMAIN D1;
D1 INTEGER
Valid If: (VALUE > 10)
SQL> ROLLBACK;
SQL> --
SQL> -- The CHECK constraint can reference the domain name.
SQL> --
SQL> ALTER DOMAIN D1 INTEGER
cont> ADD CHECK (D1 > 10)
cont> NOT DEFERRABLE;
SQL> SHOW DOMAIN D1
D1 INTEGER
Valid If: (D1 > 10)

• You can alter the data type of a domain with a referencing NOT NULL
constraint without first deleting the constraint.

• You can change the data type of a domain that is referenced by a column
used in a trigger definition and possibly invalidate the trigger. Existing
data may violate the trigger after the data type change. Before altering a
domain that is referenced by a column in a trigger definition, verify that
the new data type is consistent with the previously defined trigger.

• Using the ALTER DOMAIN statement, when you modify a domain, its
attributes are automatically propagated to all referencing tables and views.

For example, if you modify the data type of a domain, Oracle Rdb updates
any view column that refers to that domain, directly or indirectly, to reflect
the new attributes of that domain. (A view column can refer indirectly to a
domain by using an expression that refers to a base table’s column which
uses that domain.)

6–96 SQL Statements

ALTER DOMAIN Statement

Examples

Example 1: Altering the domain POSTAL_CODE_DOM

This example alters the domain POSTAL_CODE_DOM so that it accommodates
longer postal codes:

SQL> --
SQL> -- The data type of the current domain POSTAL_CODE_DOM is CHAR(5):
SQL> --
SQL> SHOW DOMAIN POSTAL_CODE_DOM
POSTAL_CODE_DOM CHAR(5)
Comment: standard definition of ZIP
Rdb default:
SQL> --
SQL> -- Now, alter the domain to accommodate larger postal codes:
SQL> --
SQL> ALTER DOMAIN POSTAL_CODE_DOM IS CHAR(10);
SQL> --
SQL> -- The SHOW TABLES statement shows how changing the
SQL> -- domain POSTAL_CODE_DOM changes all the
SQL> -- columns that were created using the domain:
SQL> --
SQL> SHOW TABLE COLLEGES
Information for table COLLEGES

Comment on table COLLEGES:
names and addresses of colleges attended by employees

Columns for table COLLEGES:
Column Name Data Type Domain
----------- --------- ------
.
.
.
POSTAL_CODE CHAR(10) POSTAL_CODE_DOM
.
.
.

SQL> SHOW TABLE EMPLOYEES
Information for table EMPLOYEES

Comment on table EMPLOYEES:
personal information about each employee

SQL Statements 6–97

ALTER DOMAIN Statement

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
.
.
.
POSTAL_CODE CHAR(10) POSTAL_CODE_DOM

Example 2: Altering the domain ID_DOM

The following example alters the data type for the domain ID_DOM, which is a
standard definition of the employee identification field.

In Example 1, there were no indexes based on the domain POSTAL_CODE_
DOM. In this example, several indexes that refer to columns were created
based on ID_DOM. As the following example shows, you must first delete the
indexes before altering the domain:

SQL> -- The data type for the domain ID_DOM is CHAR(5):
SQL> --
SQL> SHOW DOMAIN ID_DOM
ID_DOM CHAR(5)
Comment: standard definition of employee id
SQL> --
SQL> -- The first attempt to alter the domain ID_DOM fails.
SQL> -- You must first delete all constraints that use the
SQL> -- field EMPLOYEE_ID.
SQL> --
SQL> ALTER DOMAIN ID_DOM CHAR(6);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-FLDINCON, field EMPLOYEE_ID is referenced in constraint
RESUMES_FOREIGN1
-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed
SQL> ALTER TABLE RESUMES DROP CONSTRAINT RESUMES_FOREIGN1;
SQL> --
SQL> ALTER DOMAIN ID_DOM IS CHAR(6);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-FLDINCON, field EMPLOYEE_ID is referenced in constraint
DEGREES_FOREIGN1
-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed
SQL> --
SQL> ALTER TABLE DEGREES DROP CONSTRAINT DEGREES_FOREIGN1;

.

.

.
SQL> -- You must then delete all indexes.
SQL> --
SQL> ALTER DOMAIN ID_DOM IS CHAR(6);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-FLDINUSE, field EMPLOYEE_ID is referenced in index EMP_EMPLOYEE_ID
-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed
SQL> --

6–98 SQL Statements

ALTER DOMAIN Statement

SQL> DROP INDEX EMP_EMPLOYEE_ID;
SQL> --
SQL> ALTER DOMAIN ID_DOM IS CHAR(6);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-FLDINUSE, field EMPLOYEE_ID is referenced in index JH_EMPLOYEE_ID
-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed
SQL> --
SQL> DROP INDEX JH_EMPLOYEE_ID;
SQL> --

.

.

.
SQL> --
SQL> -- You can now alter the domain.
SQL> --
SQL> ALTER DOMAIN ID_DOM IS CHAR(6);
SQL> SHOW DOMAIN ID_DOM;
ID_DOM CHAR(6)
Comment: standard definition of employee id

Example 3: Specifying default values with the ALTER DOMAIN statement

The following example alters domains, specifying default values for those
domains:

SQL> -- If no date is entered, use the NULL default.
SQL> --
SQL> ALTER DOMAIN DATE_DOM
cont> SET DEFAULT NULL;
SQL> --
SQL> -- If the street address takes only one line,
SQL> -- use "NONE" for the default for the second line.
SQL> --
SQL> ALTER DOMAIN ADDRESS_DATA_2_DOM
cont> SET DEFAULT ’NONE’;
SQL> --
SQL> -- If most employees work full-time, make the code
SQL> -- for full-time, 1, the default work status.
SQL> --
SQL> ALTER DOMAIN STATUS_CODE_DOM
cont> SET DEFAULT ’1’;

Example 4: Specifying an edit string with the ALTER DOMAIN statement

The following example specifies an EDIT STRING clause that controls how
SQL displays columns based on the domain MIDDLE_INITIAL_DOM. The edit
string in the example, "X.?’No middle initial’", specifies that columns based
on the domain are displayed as one character followed by a period. If there is
no value for the column, SQL displays the string following the question mark,
’No middle initial’.

SQL Statements 6–99

ALTER DOMAIN Statement

SQL> ALTER DOMAIN MIDDLE_INITIAL_DOM
cont> EDIT STRING ’X.?’’No middle initial’;
SQL> SELECT MIDDLE_INITIAL FROM EMPLOYEES;
MIDDLE_INITIAL
A.
D.
No middle initial
No middle initial

.

.

.

Example 5: Specifying a new collating sequence with the ALTER DOMAIN
statement

The following example creates a domain with the predefined NCS collating
sequence FRENCH. You must first execute the CREATE COLLATING
SEQUENCE statement. The example then changes the collating sequence
to Finnish, and then specifies that the domain has no collating sequence.

SQL> CREATE COLLATING SEQUENCE FRENCH FRENCH;
SQL> CREATE DOMAIN LAST_NAME_ALTER_TEST CHAR (10)-
cont> COLLATING SEQUENCE IS FRENCH;
SQL> --
SQL> SHOW DOMAIN LAST_NAME_ALTER_TEST
LAST_NAME_ALTER_TEST CHAR(10)
Collating sequence: FRENCH
SQL> --
SQL> -- Now, change the collating sequence to Finnish. You must first
SQL> -- execute the CREATE COLLATING SEQUENCE statement.
SQL> --
SQL> CREATE COLLATING SEQUENCE FINNISH FINNISH;
SQL> ALTER DOMAIN LAST_NAME_ALTER_TEST CHAR (10)-
cont> COLLATING SEQUENCE IS FINNISH;
SQL> --
SQL> SHOW DOMAIN LAST_NAME_ALTER_TEST
LAST_NAME_ALTER_TEST CHAR(10)
Collating sequence: FINNISH
SQL> --
SQL> -- Now, alter the domain so there is no collating sequence.
SQL> --
SQL> ALTER DOMAIN LAST_NAME_ALTER_TEST CHAR (10)-
cont> NO COLLATING SEQUENCE;
SQL>
SQL> SHOW DOMAIN LAST_NAME_ALTER_TEST
LAST_NAME_ALTER_TEST CHAR(10)

6–100 SQL Statements

ALTER DOMAIN Statement

Assume the following for Examples 6 and 7:

• The database was created specifying the database default character set as
DEC_KANJI and the national character set as KANJI.

• The domain DEC_KANJI_DOM was created specifying the database
default character set.

• The table COLOURS was created assigning the DEC_KANJI_DOM domain
to the column ROMAJI.

Example 6: Altering the domain DEC_KANJI_DOM

SQL> SET CHARACTER LENGTH ’CHARACTERS’;
SQL> SHOW DOMAIN DEC_KANJI_DOM;
DEC_KANJI_DOM CHAR(8)
SQL> ALTER DOMAIN DEC_KANJI_DOM NCHAR(8);
SQL> SHOW DOMAIN DEC_KANJI_DOM;
DEC_KANJI_DOM CHAR(8)

KANJI 8 Characters, 16 Octets
SQL>

Example 7: Error altering a domain used in a table containing data

In the following example, the column ROMAJI is based on the domain DEC_
KANJI_DOM. If the column ROMAJI contains data before you alter the
character set of the domain, SQL displays the following error when you try to
retrieve data after altering the domain.

SQL> SELECT ROMAJI FROM COLOURS;
%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-CSETBADASSIGN, incompatible character sets prohibits the requested
assignment
SQL> --
SQL> -- To recover, use the ROLLBACK statement or reset the character set to
SQL> -- its original value.
SQL> --
SQL>ROLLBACK;
SQL> SELECT ROMAJI FROM COLOURS;
ROMAJI
kuro
shiro
ao
aka
ki
midori

6 rows selected
SQL>

SQL Statements 6–101

ALTER DOMAIN Statement

Example 8: Modifying a domain constraint

The following example shows how to modify an existing constraint on a
domain:

SQL> SHOW DOMAIN TEST_DOM
TEST_DOM DATE ANSI
Rdb default: NULL
VALID IF: (VALUE > DATE’1900-01-01’ OR

VALUE IS NULL)
SQL> --
SQL> -- Add the new domain constraint definition.
SQL> --
SQL> ALTER DOMAIN TEST_DOM
cont> ADD CHECK (VALUE > DATE’1985-01-01’)
cont> NOT DEFERRABLE;

Example 9: Creating stored procedure domain dependencies

The following code fragment from a stored module shows a domain in a
parameter list and a domain in a stored procedure block:

SQL> create module SAMPLE
cont> procedure FIRST_NAME
cont> (in :id id_dom
cont> ,out :first_name char(40));
cont> begin
cont> declare :fn first_name_dom;
cont> select first_name into :fn
cont> from employees
cont> where employee_id = :id;
cont> -- return capitalized first name
cont> set :first_name =
cont> UPPER (substring (:fn from 1 for 1)) ||
cont> LOWER (substring (:fn from 2));
cont> end;
cont> end module;
SQL>
SQL> declare :first_name first_name_dom;
SQL> call FIRST_NAME (’00164’, :first_name);
FIRST_NAME
Alvin
SQL>
SQL> alter domain id_dom
cont> char(10);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RTNEXI, field "ID_DOM" is used in routine "FIRST_NAME"
-RDMS-F-FLDNOTCHG, field ID_DOM has not been changed
SQL>
SQL> alter domain first_name_dom
cont> char(60);

6–102 SQL Statements

ALTER DOMAIN Statement

• Domain specified in a parameter list

When you specify a domain in a parameter list (id_number) of a stored
routine and you subsequently try to alter that domain, the ALTER
DOMAIN statement fails because SQL sets up a dependency between the
domain and the stored routine in which the domain resides. Because the
statement fails, Oracle Rdb does not invalidate the stored routine. Oracle
Rdb keeps this domain parameter list dependency in RDB$PARAMETERS.

• Domain specified in a stored routine block

When you specify a domain (last_name) within a stored routine block and
you subsequently try to alter that domain, the ALTER DOMAIN statement
succeeds. Future calls to the stored routine will use the new definition of
the domain.

Example 10: Altering a Domain to Provide a Default Value

This examples demonstrates that the default value added to the domain is
propagated to the tables using that domain.

SQL> -- Display the current domain definition.
SQL> SHOW DOMAIN DEPARTMENT_NAME
DEPARTMENT_NAME CHAR(30)
Comment: Department name
Missing Value: None
SQL> -- Alter the domain to provide a default value
SQL> -- for DEPARTMENT_NAME.
SQL> ALTER DOMAIN DEPARTMENT_NAME
cont> SET DEFAULT ’Not Recorded’;
SQL> -- Display the altered domain definition.
SQL> SHOW DOMAIN DEPARTMENT_NAME;
DEPARTMENT_NAME CHAR(30)
Comment: Department name
Oracle Rdb default: Not Recorded
Missing Value: None
SQL> -- Insert a record and omit the value for DEPARTMENT_NAME.
SQL> INSERT INTO DEPARTMENTS (DEPARTMENT_CODE)
cont> VALUES
cont> (’GOGO’);
1 row inserted
SQL> COMMIT;
SQL> -- Select the newly inserted record to show that the
SQL> -- default for the DEPARTMENT_NAME domain was inserted.
SQL> SELECT * FROM DEPARTMENTS WHERE DEPARTMENT_CODE=’GOGO’;
DEPARTMENT_CODE DEPARTMENT_NAME MANAGER_ID
BUDGET_PROJECTED BUDGET_ACTUAL

GOGO Not Recorded NULL
NULL NULL

1 row selected

SQL Statements 6–103

ALTER FUNCTION Statement

ALTER FUNCTION Statement

Allows attributes to be changed for a function that was created using the
CREATE MODULE statement or the CREATE FUNCTION statement.

It can be used to:

• Force a stored (SQL) function to be compiled (COMPILE option)

• Modify attributes of external functions

• Change the comment on a function

Environment

You can use the ALTER FUNCTION statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER FUNCTION <function-name> COMMENT IS ’<string>’
/

COMPILE
NAME <external-body-name>
external-location-clause
LANGUAGE language-name
notify-clause
RETURNS NULL ON NULL INPUT
CALLED ON NULL INPUT
bind-site-clause
bind-scope-clause

NOT VARIANT
DETERMINISTIC

RENAME TO <new-function-name>

6–104 SQL Statements

ALTER FUNCTION Statement

external-location-clause =

DEFAULT LOCATION
LOCATION ’<image-location>’

WITH ALL LOGICAL_NAME TRANSLATION
SYSTEM

notify-clause =

NOTIFY notify-entry-name ON BIND
CONNECT
TRANSACTION

,

bind-site-clause =

BIND ON CLIENT SITE
SERVER

bind-scope-clause =

BIND SCOPE CONNECT
TRANSACTION

Arguments

BIND ON CLIENT SITE
BIND ON SERVER SITE
Selects the execution model and environment for external routine execution.

CLIENT site binding causes the external routine to be activated and executed
in the OpenVMS database client (application) process. This is the default
binding. This binding offers the most efficient execution characteristics,
allows sharing resources such as I/O devices, and allows debugging of external
routines as if they were part of the client application. However, this binding
may suffer from address space limitations. Because it shares virtual memory
with the database buffers, this binding is restricted to the client process
system user environment, and prohibits external routine execution in cases of
an application running with elevated privileges.

SQL Statements 6–105

ALTER FUNCTION Statement

SERVER site binding causes the external routine to be activated in a separate
process from the database client and server. The process is started on the
same node at the database process. This binding offers reasonable execution
characteristics, a larger address space, a true session user environment, and
has no restrictions regarding client process elevated privileges. However, this
binding does not permit sharing resources such as I/O devices with the client
(in particular, there is no connection to the client interactive terminal), and
debugging of routines is generally not possible.

BIND SCOPE CONNECT
BIND SCOPE TRANSACTION
Defines the scope during which an external routine is activated and at what
point the external routine is deactivated. The default scope is CONNECT.

• CONNECT

An active routine is deactivated when you detach from the database (or
exit without detaching).

• TRANSACTION

An active routine is deactivated when a transaction is terminated
(COMMIT or ROLLBACK). In the event that a transaction never occurs,
the scope reverts to CONNECT.

COMMENT IS string
Adds a comment about the function. SQL displays the text of the comment
when it executes a SHOW FUNCTIONS statement. Enclose the comment in
single quotation marks (’) and separate multiple lines in a comment with a
slash mark (/).

This clause is equivalent to the COMMENT ON FUNCTION statement.

COMPILE
The COMPILE option forces the Oracle Rdb server to recompile the stored
(SQL) function. External functions are not affected.

Use COMPILE when a function has been made invalid by the execution of a
DROP . . . CASCADE operation. This mechanism is preferred over the SET
FLAGS ’VALIDATE_ROUTINE’ method available in previous versions.

DEFAULT LOCATION
LOCATION ’image-location’
A default or specific location for the external routine image. The resulting file
specification must include the type .exe.

This can be an image file specification or merely a logical name.

6–106 SQL Statements

ALTER FUNCTION Statement

SQL selects a routine based on a combination of factors:

• Image string

The location defaults to DEFAULT LOCATION, which represents the file
specification string RDB$ROUTINES.

• Logical name translation

The WITH ALL LOGICAL_NAME TRANSLATION and the WITH
SYSTEM LOGICAL_NAME TRANSLATION clauses specify how logical
names in the location string are to be translated.

If no translation option is specified, or if WITH ALL LOGICAL_NAME
TRANSLATION is specified, logical names are translated in the default
manner.

If WITH SYSTEM LOGICAL_NAME TRANSLATION is specified, any
logical names in the location string are expanded using only EXECUTIVE_
MODE logical names from the SYSTEM logical name table.

DETERMINISTIC
NOT DETERMINISTIC
These clauses are synonyms for the VARIANT and NOT VARIANT clauses for
conformance to the SQL/PSM standard.

The DETERMINISTIC clause indicates that the same inputs to the function
will generate the same output. It is the same as the NOT VARIANT clause.

The NOT DETERMINISTIC clause indicates that the output of the function
does not depend on the inputs. It is the same as the VARIANT clause.

external-body-clause
Identifies key characteristics of the routine: its name, where the executable
image of the routine is located, the language in which the routine is coded, and
so forth.

external-body-name
The name of the external routine. If you do not specify a name, SQL uses the
name you specify in the external-routine-name clause.

This name defines the routine entry address that is called for each invocation
of the routine body. The named routine must exist in the external routine
image selected by the location clause.

Unquoted names are converted to uppercase characters.

SQL Statements 6–107

ALTER FUNCTION Statement

LANGUAGE language-name
The name of the host language in which the external routine was coded.
You can specify ADA, C, COBOL, FORTRAN, PASCAL, or GENERAL. The
GENERAL keyword allows you to call routines written in any language.

See the Usage Notes for more language-specific information.

notify-clause
Specifies the name of a second external routine called (notified) when certain
external routine or database-related events occur. This name defines the
routine entry address that is called, for each invocation of the notify routine.
The named routine must exist in the external routine image selected by the
location clause.

The events of interest to the notify routine are ON BIND, ON CONNECT, and
ON TRANSACTION. Multiple events can be specified.

The following describes the events and scope of each event:

BIND Routine activation to routine deactivation
CONNECT Database attach to database disconnect
TRANSACTION Start transaction to commit or roll back transaction

RENAME TO
Changes the name of the function being altered. See the RENAME Statement
for further discussion. If the new name is the name of a synonym then an
error will be raised.

RETURNS NULL ON NULL INPUT
CALLED ON NULL INPUT
These clauses control how an external function is invoked when one or more
of the function arguments is NULL. The CALLED ON NULL INPUT clause
specifies that the function should be executed normally. A normal execution
when the PARAMETER STYLE GENERAL clause is specified means that SQL
should return a run-time error when the NULL value is detected.

The RETURNS NULL ON NULL INPUT clause instructs Oracle Rdb to avoid
the function call and just return a NULL result. This option is valuable for
library functions such as SIN, COS, CHECKSUM, SOUNDEX, and so on, that
usually return an UNKNOWN result if an argument is NULL.

The CALLED ON NULL INPUT clause is the default.

6–108 SQL Statements

ALTER FUNCTION Statement

VARIANT
NOT VARIANT
These clauses are synonyms for the DETERMINISTIC and NOT DETERMINISTIC
clauses for conformance to the SQL/PSM standard. The DETERMINISTIC
clause indicates that the same inputs to the function will generate the
same output. It is the same as the NOT VARIANT clause. The NOT
DETERMINISTIC clause indicates that the output of the function does
not depend on the inputs. It is the same as the VARIANT clause.

Usage Notes

• You require ALTER privilege on the specified procedure to execute this
statement. If the procedure is part of a module then you must have ALTER
privilege on that module.

• All of the attributes of the ALTER FUNCTION statement, with the
exception of the COMPILE, COMMENT, VARIANT, DETERMINISTIC
and RENAME TO clauses, apply only to external functions. An error is
returned if the referenced function is an SQL stored function.

• The ALTER FUNCTION statement causes the RDB$LAST_ALTERED
column of the RDB$ROUTINES table for the named function to be updated
with the transaction’s time stamp.

• The RENAME TO clause requires synonyms be enabled for this database.
Refer to the ALTER DATABASE Statement SYNONYMS ARE ENABLED
clause. Note that these synonyms may be deleted if they are no longer
used by database definitions or applications.

• If a routine has many dependencies then using ALTER is preferred over
a DROP . . . CASCADE and CREATE command sequence because it
maintains the existing dependency information that exists between this
routine and any trigger, stored routine or other database object.

Examples

Example 1: Changing a function to be NOT DETERMINISTIC

When a function is created it is assumed to be DETERMINISTIC. That is,
given the same input values it should return the same result. When a routine
has no parameters, such as the GET_TIME function shown below, then there
is never any variation in the input. In this case the function should have been
defined as NOT DETERMINISTIC to ensure that the Rdb optimizer calls it for

SQL Statements 6–109

ALTER FUNCTION Statement

each row processed, instead of using the previously returned result for each
row.

Although DROP FUNCTION and CREATE FUNCTION could have performed
the same function, ALTER FUNCTION preserves the dependencies that exist
in the database.

SQL> alter function GET_TIME
cont> not deterministic
cont> comment ’Fetch time from clock’
cont> / ’Every call must be executed, so change to be’
cont> / ’NOT DETERMINISTIC’;
SQL>
SQL> show function GET_TIME;
Information for function GET_TIME

Function is Not Deterministic (variant)
Function ID is: 262
External Location is: SYS$SHARE:CLOCKSHR.EXE
Entry Point is: GET_TIME
Comment: Fetch time from clock

Every call must be executed, so change to be
NOT DETERMINISTIC

Language is: COBOL
GENERAL parameter passing style used
Number of parameters is: 0

Parameter Name Data Type Domain or Type
-------------- --------- --------------

TIME(2)
Function result datatype
Return value is passed by value

6–110 SQL Statements

ALTER INDEX Statement

ALTER INDEX Statement

Changes an index. The ALTER INDEX statement allows you to:

• Change the characteristics of index nodes (sorted indexes only)

• Change the names of the storage areas that contain the index

• Enable or disable logging to the .aij and .ruj files

• Alter index partitions

• Change a partition name

• Change the description of a partition

• Specify whether or not the index is UNIQUE

You cannot change:

• The columns that comprise an index

• A hashed index to a sorted index

• A sorted index to a hashed index

• A sorted, nonranked index to a sorted, ranked index

• A sorted, ranked index to a sorted, nonranked index

• The duplicates compression of a sorted, ranked index

Environment

You can use the ALTER INDEX statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 6–111

ALTER INDEX Statement

Format

ALTER INDEX <index-name>

add-partition-clause
BUILD PARTITION <partition-name>
BUILD ALL PARTITIONS
DROP PARTITION <partition-name>
MOVE PARTITION <partition-name> TO area-spec
REBUILD PARTITION <partition-name>
REBUILD ALL PARTITIONS
RENAME PARTITION <partition-name> TO <new-partition-name>
TRUNCATE PARTITION <partition-name>
TRUNCATE ALL PARTITIONS
alter-index-attributes

index-store-clause

add-partition-clause =

ADD PARTITION <partition-name>

USING (<column-name>)
,

IN area-spec

WITH LIMIT OF (<literal>)
,

area-spec =

<area-name>
(threshold-clause)

LOGGING
NOLOGGING
PARTITION <name>
COMMENT IS ’string’

/
,

6–112 SQL Statements

ALTER INDEX Statement

alter-index-attributes=

threshold-clause
DUPLICATES ARE ALLOWED
LOGGING
NOLOGGING
NODE SIZE <number-bytes>
PERCENT FILL <percentage>
PREFIX CARDINALITY COLLECTION IS ENABLED

ENABLED FULL
DISABLED

USAGE UPDATE
QUERY

COMMENT IS ’<string>’
/

MAINTENANCE IS DISABLED
ENABLED

DEFERRED
IMMEDIATE

threshold-clause =

THRESHOLD IS (<val1>)
OF

THRESHOLDS ARE
OF

(<val1>)
, <val2>

, <val3>

SQL Statements 6–113

ALTER INDEX Statement

index-store-clause =

STORE

IN area-spec
USING (<column-name>)

,

IN area-spec

WITH LIMIT OF (<literal>)
,

OTHERWISE IN area-spec

Arguments

ADD PARTITION partition-name
Adds the named partition to an existing hashed index. The partition name
must be unique within the index being altered.

No other clauses may appear in the same ALTER INDEX statement. See the
Usage Notes for additional information about using the ADD PARTITION
clause.

BUILD ALL PARTITIONS
This clause operates on an index in build-pending state (created using
MAINTENANCE IS ENABLED DEFERRED) and builds all incomplete
partitions. If the index is not in build-pending state then the statement
completes successfully with a warning.

No other clauses may appear in the same ALTER INDEX statement.

BUILD PARTITION partition-name
This clause operates on an index in build-pending state (created using
MAINTENANCE IS ENABLED DEFERRED) and builds the named partition.
If the index is not in build-pending state then the statement completes
successfully with a warning.

No other clauses may appear in the same ALTER INDEX statement.

6–114 SQL Statements

ALTER INDEX Statement

COMMENT IS ’string’
Adds a comment about the index. SQL displays the text of the comment
when it executes a SHOW INDEX statement. Enclose the comment in single
quotation marks (’) and separate multiple lines in a comment with a slash
mark (/).

DROP PARTITION partition-name
Specifies that the data in the named partition be migrated to the next partition
in the map and the named partition be dropped. The last partition in the index
cannot be dropped. The referenced storage area is not dropped, only the index
partition stored in that area.

DUPLICATES ARE ALLOWED
Converts a UNIQUE index to a non-unique index. An index altered in this
manner allows duplicate key values into the index. Note that there is no way
for you to reverse this change once you commit the ALTER INDEX statement,
other than by dropping and redefining the index.

IN area-spec
When specified as part of an ADD PARTITION clause, the IN area-spec inserts
a new partition in the index. If you do not specify a WITH LIMIT OF clause or
OTHERWISE clause, the IN area-spec clause creates a new final partition.

When specified as part of an index STORE clause, the IN area-spec clause
associates the index directly with a single storage area, and all entries in the
index are stored in the area you specify.

index-name
The name of the index.

index-store-clause
A storage map definition for the index. You can specify a store clause for
indexes in a multifile database only. The STORE clause lets you specify which
storage area files are used to store the index entries.

If you omit the storage map definition, the default is to store all entries for the
index in the default storage area.

See the the CREATE INDEX Statement for details of the arguments in an
index store clause.

LOGGING
NOLOGGING
The LOGGING clause specifies that updates to new index partitions should be
logged in the recovery-unit journal file (.ruj) and after-image journal file (.aij).

SQL Statements 6–115

ALTER INDEX Statement

The NOLOGGING clause specifies that updates to new index partitions should
not be logged in the recovery-unit journal file (.ruj) and after-image journal file
(.aij).

If no store clause is used, then these attributes provide the setting for the
ALTER INDEX statement.

The LOGGING and NOLOGGING clauses are mutually exclusive; specify only
one. The LOGGING clause is the default.

MAINTENANCE IS DISABLED
Disables, but does not delete, the specified index.

When managing a very large database, an index can become corrupt or
unsuitable for query optimization. If the table on which the index has been
defined is very large, it may take a considerable amount of time to execute the
DROP INDEX statement. Using the MAINTENANCE IS DISABLED clause of
the ALTER INDEX statement disables the index so that it is no longer used
by the optimizer nor is it maintained. You can then execute the DROP INDEX
statement at a later time even when the table is in use.

Once an index has been disabled, it may be enabled again using the REBUILD
PARTITION clause.

To disable an index, you must have DROP privileges to the table on which the
index is defined, and there can be no active queries on the table.

MAINTENANCE IS ENABLED DEFERRED
An index created using this clause does not contain index keys for the current
rows in the table. Until this index is built (using ALTER INDEX . . . BUILD),
the index is placed in a build-pending state. Any table with a build-
pending index can not be updated using the INSERT, DELETE, or UPDATE
statements.

MAINTENANCE IS ENABLED IMMEDIATE
This is the default behavior for CREATE INDEX. This clause on ALTER
INDEX allows a build-pending index to be made fully operational.

MOVE PARTITION partition-name TO area-spec
Specifies that the data in the named partition be moved to the partition
identified in the area-spec clause and that the current partition is to be
dropped after the data is migrated. For example, this clause allows a single
hashed index partition to be moved to a larger storage area when too many
mixed area extends are observed.

No other clauses may appear in the same ALTER INDEX statement.

6–116 SQL Statements

ALTER INDEX Statement

NODE SIZE number-bytes
The size, in bytes, of each index node in a sorted index. You cannot specify this
argument in an ALTER INDEX statement that refers to a hashed index. See
the CREATE INDEX Statement for details of the NODE SIZE clause.

This new node size is not applied to the existing index. However, it will be
used in subsequent rebuild operations and by EXPORT/IMPORT to rebuild the
database.

PARTITION name
Names the partition. The name can be a delimited identifier if the dialect is set
to SQL99 or quoting rules are set to SQL99. Partition names must be unique
within the index. If you do not specify this clause, Oracle Rdb generates a
default name for the partition. The partition name is stored in the database
and validated.

PERCENT FILL percentage
Specifies how much each index node should be filled as a percentage of its size.
You cannot specify this argument in an ALTER INDEX statement that refers
to a hashed index. The valid range is 1 percent to 100 percent. The default is
70 percent.

Both the PERCENT FILL and USAGE clauses specify how full an index node
should be initially. You should specify either the PERCENT FILL or USAGE
clause but not both.

PREFIX CARDINALITY COLLECTION IS DISABLED
This setting disables the cardinality collection and, instead, uses a fixed scaling
algorithm which assumes a well balanced index tree. The action of this clause
will also set the existing index column cardinalities to zero.

PREFIX CARDINALITY COLLECTION IS ENABLED
This is the default behavior for CREATE INDEX. The Oracle Rdb optimizer
collects approximate cardinality values for the index columns to help in future
query optimization. Note that no extra I/O is incurred to collect these values
and, therefore, adjacent key values from other index nodes can not be checked.
Hence, some inaccuracy may be seen for these indexes. In most cases, this is
adequate for query optimizations. If this clause is used on an index that is
currently set to PREFIX CARDINALITY COLLECTION DISABLED, the RMU
Collect Optimizer_Statistics command needs to be executed as soon as possible
to load the correct values.

SQL Statements 6–117

ALTER INDEX Statement

PREFIX CARDINALITY COLLECTION IS ENABLED FULL
This setting requests that extra I/O be performed, if required, to ensure
that the cardinality values reflect the key value changes of adjacent index
nodes. If this clause is used on an index which is currently set to PREFIX
CARDINALITY COLLECTION DISABLED or ENABLED, the RMU Collect
Optimizer_Statistics command needs to be executed as soon as possible to load
the correct values.

REBUILD ALL PARTITIONS
This clause combines the TRUNCATE and BUILD actions into a single
function. No other clauses may appear in the same ALTER INDEX statement.

REBUILD PARTITION partition-name
This clause combines the TRUNCATE and BUILD actions into a single
function for the named partition. No other clauses may appear in the same
ALTER INDEX statement.

RENAME PARTITION partition-name TO new-partition-name
Changes the name of a partition. This clause can be applied to all types of
indexes. It is particularly useful for specifying a more meaningful name for the
default partition. Use the SHOW INDEX (PARTITION) statement to display
the default names of the partitions. See Example 4 in the Examples section.

No other clauses may appear in the same ALTER INDEX statement.

threshold-clause
See the CREATE INDEX Statement for a description of the threshold-clause.

TRUNCATE ALL PARTITIONS
This clause operates in a similar way to TRUNCATE TABLE, but just on one
index. The index is automatically set to MAINTENANCE IS ENABLED
DEFERRED (i.e. build-pending state) if it was currently ENABLED
IMMEDIATE. Otherwise is stays in a disabled state.

No other clauses may appear in the same ALTER INDEX statement.

TRUNCATE PARTITION partition-name
This clause operates on just the named index partition. The index is
automatically set to MAINTENANCE IS ENABLED DEFERRED (that is,
build-pending state) if it was currently ENABLED IMMEDIATE. Otherwise is
stays in a disabled state.

No other clauses may appear in the same ALTER INDEX statement.

6–118 SQL Statements

ALTER INDEX Statement

USAGE UPDATE
USAGE QUERY
Specifies a PERCENT FILL value appropriate for update-intensive or query-
intensive applications. You cannot specify this argument in an ALTER INDEX
statement that refers to a hashed index. The USAGE UPDATE argument sets
the PERCENT FILL value at 70 percent. The USAGE QUERY argument sets
the PERCENT FILL value at 100 percent.

You should specify either the PERCENT FILL or USAGE clause, but not both.

USING (column-name)
Specifies columns whose values are used as limits for partitioning the index
across multiple storage areas. You cannot name columns not specified as index
key segments.

If the index key is multisegmented, you can include some or all of the columns
that are joined to form the index key. You must specify the columns in the
order in which they were specified when the index key was defined. If you
include only a subset of the columns from the multisegmented index, you must
include the leading columns of the index key.

WITH LIMIT OF (literal)
Specifies the highest value for the index key that resides in a particular storage
area if ASCENDING is defined. If DESCENDING is defined, the lowest value
is specified for the index key that resides in a particular storage area. For
multicolumn index keys, specify a literal value for each column listed in the
USING clause.

The WITH LIMIT OF clause must specify a new unique set of values for the
partition. The number of literals in the list must be the same as the number
of columns in the USING clause. The data type of the literals must agree with
the data type of the column. For character columns, enclose the literals in
single quotation marks.

Usage Notes

• ALTER INDEX ... REBUILD PARTITION or REBUILD ALL PARTITIONS
is primarily designed for format MIXED partitions. If you execute this
command on format UNIFORM partitions, then the database administrator
should be aware that the affected storage area may extend. For UNIFORM
storage areas, Rdb employs a fast logical area delete mechanism for
removing the data from the index partition. While this process is fast,
it has a side effect of locking those pages for the duration of the session.
Therefore, the build phase of the ALTER INDEX cannot reuse those

SQL Statements 6–119

ALTER INDEX Statement

previously released pages and must allocate unused pages, possibly
extending the storage area.

Instead, Oracle recommends that the ALTER INDEX ... REBUILD be
recoded to use ALTER INDEX ... TRUNCATE, a DISCONNECT ALL, and
then a final ALTER INDEX ... BUILD. This is shown in the code outline
below.

attach ’filename ...’;
alter index ... truncate all partitions;
commit;
disconnect all;
attach ’filename ...’;
alter index ... build all partitions;
commit;

• Attempts to alter an index will fail if that index is involved in a
query at the same time. Users must detach from the database with a
DISCONNECT statement before you can alter the index. When Oracle
Rdb first accesses an object, such as the index, a lock is taken out on that
object and not released until the user exits the database. If you attempt to
update this object, you will receive a lock conflict on client message due to
the other user’s access to the object.

Similarly, while you alter an index, users cannot execute queries involving
that index until you complete the transaction with a COMMIT or
ROLLBACK statement for the ALTER statement; otherwise the users
receive a LOCK CONFLICT ON CLIENT error message. While data
definition language (DDL) operations are performed, normal data locking
mechanisms are used against system tables. (System tables contain
information about objects in the database.) Therefore, attempts to update
an object lock out attempts to query that object. These locks are held until
the DDL operation is committed or rolled back.

• You cannot alter compression clauses for index columns using the SIZE IS
and MAPPING VALUES clauses. You must delete the index and re-create
it to alter such clauses.

• Note the difference between a partition and a storage area. A partition
is a logical entity and a storage area is a physical entity. A table or
index partition resides in a single storage area, but many such partitions
from other tables and indexes can coexist in the same storage area.
When a partition is said to be dropped, it is the logical entity within the
storage area that is deleted. You move the data explicitly using the MOVE
PARTITION clause or implicitly using the DROP PARTITION and the
ADD PARTITION clauses.

6–120 SQL Statements

ALTER INDEX Statement

To drop the physical storage area file, use the ALTER DATABASE
statement with the DROP STORAGE AREA clause.

• The partition-name that you specify must be unique within the index being
altered. The name is stored in the system table RDB$STORAGE_MAP_
AREAS in the column RDB$PARTITION_NAME so that it can be used
with other partition-related statements.

• Use the COMMENT ON statement to add comments to existing partitions.
(See the COMMENT ON Statement for syntax.) This statement can be
applied to all types of indexes.

The partition-name must exist in the index being referenced. The old
comment (if one existed), is deleted and replaced with the new text you
specify and becomes permanent when a COMMIT statement is executed.

• If the INDEX_STATS flag is enabled then the ALTER INDEX command
logs messages to the file specified by the RDMS$DEBUG_FLAGS_OUTPUT
logical name (or the standard output device, if the flag if not defined) to
report the progress of the ALTER INDEX statement. The INDEX_STATS
flag is enabled by doing one of the following:

Using the SET FLAGS ’INDEX_STATS’ command.

Defining the RDMS$DEBUG_FLAGS logical to "Ai".

Defining the RDMS$SET_FLAGS logical name to INDEX_STATS.

Note

The read/write I/O statistics shown in Example 3 in the Examples
section are not displayed if STATISTICS COLLECTION IS DISABLED
on the database or if the logical name RDM$BIND_STATS_ENABLED
is defined as 0.

• The following notes apply to the ADD, DROP, and MOVE PARTITION
clauses:

Currently, these clauses are supported for hashed indexes only. Support
for sorted indexes will be provided in a future release.

When you add, drop, or move a partition, there must be no active
queries compiled against the table. This includes declared cursors in
the current session and other applications that have referenced the
table. As with other ALTER INDEX clauses, exclusive access to the
table is required during the current transaction.

SQL Statements 6–121

ALTER INDEX Statement

The SHOW INDEX or SHOW TABLE (INDEX) command displays the
original source of the index definition with the ADD, DROP, or MOVE
PARTITION source appended. See Example 3 in the Examples section.
Use the RMU Extract command with the Item=Index qualifier to see
the current index definition with any additional partitions merged
into the CREATE INDEX syntax, dropped partitions omitted from the
CREATE INDEX syntax, or updated partitions (for moved partitions)
in the CREATE INDEX syntax.

• The following notes apply to the ADD PARTITION clause only:

The area-spec clause allows a PARTITION clause to name the partition.
If you use the area-spec clause, the partition name it specifies must
be the same as the partition name specified in the ADD PARTITION
clause.

Oracle Rdb stores the partition name in the system table
RDB$STORAGE_MAP_AREAS so that it can be used with other
partition-related statements. The name is validated and must be
unique per index.

To add partitions to an index, the index must have been created with a
STORE clause so that additional partitions can be added.

The USING clause must list the same column names in the same order
as in the original index definition.

If no WITH LIMIT OF clause is specified, then the partition is added at
the end of the index as an OTHERWISE partition. If an OTHERWISE
partition already exists for this index then an error is reported.

The WITH LIMIT OF clause must specify a new unique set of values
for the partition. A literal value must exist for each column listed in
the USING clause.

When a new final partition or an OTHERWISE partition is successfully
added, no I/O to the index is required. That is, no data in the index
needs to be relocated.

The ADD PARTITION clause reads the RDB$SYSTEM_RECORD
rows that are stored on each page of a MIXED area and locates the
hash buckets for the current index. Any hash keys that fall into the
new partition are moved (with any associated duplicates) to the new
partition. Any hash keys that do not belong in the newly added area
are not moved.

6–122 SQL Statements

ALTER INDEX Statement

Note

If this hashed index is used in a PLACEMENT VIA INDEX clause of a
storage map, then those placed table rows are not moved by the ADD
PARTITION clause. However, the new hashed index partition will
correctly reference those rows even though they will no longer be stored
adjacent to the hash bucket.

If you attach to the database using the RESTRICTED ACCESS
clause, then all partitions (and system record areas) are reserved for
EXCLUSIVE access.

These areas are also reserved for EXCLUSIVE access if the table
appears in the RESERVING clause of the current transaction (either a
DECLARE TRANSACTION or SET TRANSACTION statement) with
an EXCLUSIVE mode.

Otherwise, the default action is to reserve the new and subsequent
partition of the index for PROTECTED WRITE. The RDB$SYSTEM_
RECORD of the new partition is reserved for SHARED WRITE and
the RDB$SYSTEM_RECORD of the existing partition is reserved for
SHARED READ mode.

Using EXCLUSIVE access to the partitions limits concurrent access
to those storage areas by other users of the RDB$SYSTEM_RECORD,
for instance, if other indexes are stored in that storage area. However,
EXCLUSIVE access has the benefit of eliminating I/O to the associated
snapshot files and reducing the virtual memory requirements of
this operation. Therefore, Oracle Corporation recommends using
EXCLUSIVE mode when possible to reduce the elapsed time of the
ALTER INDEX operation. A COMMIT operation should be performed
as soon as possible upon completion of the operation so that locks on
the table are released.

If the NOLOGGING clause is used (or the RDMS$CREATE_LAREA_
NOLOGGING logical name is defined), then the hash buckets and
duplicate nodes written to the new partition are not journaled.
However, the updates to the existing RDB$SYSTEM_RECORD in
that partition, and the deletions performed on the following partition,
are journaled.

• The following notes apply to the DROP PARTITION clause only:

The partition-name must exist in the index being altered. The name is
checked against the system table RDB$STORAGE_MAP_AREAS and
the column RDB$PARTITION_NAME.

SQL Statements 6–123

ALTER INDEX Statement

The index must have been created with a STORE clause, so that
partitions can be referenced.

There must be no active queries compiled against this table. This
includes declared cursors in the current session, or other applications
that have referenced the table. As with other ALTER INDEX
statements, exclusive access to the table is required during the current
transaction.

The DROP PARTITION clause reads the RDB$SYSTEM_RECORD
rows that are stored on each page of a MIXED area and locates the
hash buckets for the current index. All hash keys are moved (with any
associated duplicates) to the next partition.

Note

If this hashed index is used in a PLACEMENT VIA INDEX clause of a
storage map, then those placed table rows are not moved by the DROP
PARTITION clause. However, the hashed index will still correctly
reference those rows even though they will no longer be stored adjacent
to the hash bucket.

If you attach to the database using the RESTRICTED ACCESS clause,
then all partitions (and system record areas) will be reserved for
EXCLUSIVE access.

These areas will also be reserved for EXCLUSIVE access if the table
appears in the RESERVING clause of the current transaction (either a
DECLARE TRANSACTION or SET TRANSACTION statement) with
an EXCLUSIVE mode.

Otherwise, the default action is to reserve the old partition and its
RDB$SYSTEM_RECORD for EXCLUSIVE access. The following
partition is reserved for PROTECTED WRITE, and its RDB$SYSTEM_
RECORD is reserved for SHARED WRITE.

Using EXCLUSIVE access to the partitions will limit concurrent access
to those storage areas by other users of the RDB$SYSTEM_RECORD,
for instance, if other indexes are stored in that storage area. However,
EXCLUSIVE access eliminates I/O to the associated snapshot files and
reduces the virtual memory requirements of this operation. Therefore,
Oracle Corporation recommends using EXCLUSIVE mode when
possible to reduce the elapsed time of the ALTER INDEX operation.
A COMMIT operation should be performed as soon as possible upon
completion of the operation so that locks on the table are released.

6–124 SQL Statements

ALTER INDEX Statement

• The following notes apply to the MOVE PARTITION clause only:

The partition-name must exist in the index being altered. The name is
checked against the system table RDB$STORAGE_MAP_AREAS and
the column RDB$PARTITION_NAME.

The MOVE PARTITION clause can also rename the partition by
including a PARTITION clause in the area-spec clause. The partition-
name specified by this clause must have the same name as specified for
the MOVE PARTITION or specify a unique name not already used by
this index.

The index must have been created with a STORE clause, so that
partitions can be referenced.

The MOVE PARTITION clause reads the RDB$SYSTEM_RECORD
rows which are stored on each page of a MIXED area and locates the
hash buckets for the current index. All hash keys will be moved (with
any associated duplicates) to the new storage area associated with this
index.

Note

If this hashed index is used in a PLACEMENT VIA INDEX clause of a
storage map, then those placed table rows are not moved by the MOVE
PARTITION clause. However, the hashed index will still correctly
reference those rows even though they will no longer be stored adjacent
to the hash bucket.

If you attach to the database using the RESTRICTED ACCESS clause,
then all partitions (and system record areas) will be reserved for
EXCLUSIVE access.

These areas will also be reserved for EXCLUSIVE access if the table
appears in the RESERVING clause of the current transaction (either a
DECLARE TRANSACTION or SET TRANSACTION statement) with
an EXCLUSIVE mode.

Otherwise, the default action is to reserve the old partition and its
RDB$SYSTEM_RECORD for EXCLUSIVE access. The following
partition is reserved for PROTECTED WRITE, and its RDB$SYSTEM_
RECORD is reserved for SHARED WRITE.

SQL Statements 6–125

ALTER INDEX Statement

Using EXCLUSIVE access to the partitions will limit concurrent access
to those storage areas by other users of the RDB$SYSTEM_RECORD,
for instance, if other indexes are stored in that storage area. However,
EXCLUSIVE access eliminates I/O to the associated snapshot files and
reduces the virtual memory requirements of this operation. Therefore,
Oracle Corporation recommends using EXCLUSIVE mode when
possible to reduce the elapsed time of the ALTER INDEX operation.
A COMMIT operation should be performed as soon as possible upon
completion of the operation so that locks on the table are released.

If the NOLOGGING clause is used (or if the RDMS$CREATE_LAREA_
NOLOGGING logical name is defined) then the hash buckets and
duplicate nodes written to the new partition are not journaled.
However, the updates to the existing RDB$SYSTEM_RECORD in
that partition, and the deletes performed on the following partition, are
journaled.

• The following usage notes apply to the RENAME PARTITION clause only:

The partition-name must exist in the index being altered. The name is
checked against the system table RDB$STORAGE_MAP_AREAS and
the column RDB$PARTITION_NAME.

The new name replaces the current name and becomes permanent
when a COMMIT is executed.

This clause can be applied to both sorted and hashed indexes.

• ALTER INDEX . . . TRUNCATE PARTITION <partition-name> is ideal
for large indexes that need to be deleted. It allows parts of the index
to be deleted a little at a time. When DROP INDEX is finally used, the
truncated partitions will not be reprocessed.

• The TRUNCATE TABLE statement will also truncate partitions of any
build-pending indexes and change the state to enabled (because the empty
index is complete for an empty table). Any index that has maintenance
disabled will not be processed by the TRUNCATE TABLE statement.

• Oracle Corporation recommends using SET FLAGS with the INDEX_
STATS option when using any of the following ALTER INDEX clauses:

• BUILD PARTITION and BUILD ALL PARTITIONS

• REBUILD PARTITION and REBUILD ALL PARTITIONS

• TRUNCATE PARTITION and TRUNCATE ALL PARTITIONS

The traced output describes the action of these clauses.

6–126 SQL Statements

ALTER INDEX Statement

• REBUILD PARTITION, TRUNCATE PARTITION and BUILD PARTITION
all leave the index in build-pending state and an ALTER INDEX . . .
MAINTENANCE IS ENABLED step must be executed after all partitions
have been built. A warning is generated in interactive SQL to remind the
database administrator that the index is incomplete.

SQL> alter index PERSON_INDEX_S
cont> rebuild partition P3;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-IDXBLDPEND, index in build pending state - maintenance is disabled

• The BUILD ALL and REBUILD ALL operations automatically enable
maintenance on the index.

• The ALTER INDEX statement can be used to build all or part of the index
on a table reserved in DATA DEFINITION mode.

The following clauses are supported:

BUILD PARTITION and BUILD ALL PARTITIONS

REBUILD PARTITION and REBUILD ALL PARTITIONS

TRUNCATE PARTITION and TRUNCATE ALL PARTITIONS

COMMENT IS

The BUILD and REBUILD PARTITION operators are best suited to
concurrent execution as they may require I/O to construct the new index
partition.

Examples

Example 1: Disabling an index

The following example shows how to disable an index that can be deleted at a
later time when the database table can be taken off line:

SQL> alter index COLL_COLLEGE_CODE
cont> maintenance is disabled;
SQL> show index COLL_COLLEGE_CODE
Indexes on table COLLEGES:
COLL_COLLEGE_CODE with column COLLEGE_CODE
No Duplicates allowed
Type is Sorted
Key suffix compression is DISABLED
Index is no longer maintained
Node size 430

SQL Statements 6–127

ALTER INDEX Statement

Example 2: Changing a Unique Index to Non-Unique

SQL> show table (index) DEPARTMENTS
Information for table DEPARTMENTS

Indexes on table DEPARTMENTS:
DEPARTMENTS_INDEX with column DEPARTMENT_CODE
No Duplicates allowed
Type is Sorted
Key suffix compression is DISABLED
Node size 430

SQL> insert into DEPARTMENTS (DEPARTMENT_CODE) values (’SUSO’);
%RDB-E-NO_DUP, index field value already exists;
duplicates not allowed for DEPARTMENTS_INDEX
SQL> alter index DEPARTMENTS_INDEX duplicates are allowed;
SQL> insert into DEPARTMENTS (DEPARTMENT_CODE) values (’SUSO’);
1 row inserted
SQL> show table (index) DEPARTMENTS
Information for table DEPARTMENTS

Indexes on table DEPARTMENTS:
DEPARTMENTS_INDEX with column DEPARTMENT_CODE
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED
Node size 430

6–128 SQL Statements

ALTER INDEX Statement

Example 3: Adding an Index Partition Before and After the Final Partition

SQL> CREATE UNIQUE INDEX EMPLOYEES_INDEX
cont> ON EMPLOYEES (EMPLOYEE_ID)
cont> TYPE IS HASHED
cont> STORE USING (EMPLOYEE_ID)
cont> IN JOBS WITH LIMIT OF (’00999’);
SQL> COMMIT;
SQL> -- To add a partition before the final partition requires
SQL> -- that the final partition (which now follows the new partition)
SQL> -- be scanned and matching keys moved to the new partition.
SQL> SET TRANSACTION READ WRITE
cont> RESERVING EMPLOYEES for EXCLUSIVE WRITE;
SQL> SET FLAGS INDEX_STATS;
SQL> ALTER INDEX EMPLOYEES_INDEX
cont> ADD PARTITION NEW_EMPS_200
cont> USING (EMPLOYEE_ID)
cont> IN EMP_INFO WITH LIMIT OF (’00200’);
~Ai alter index "EMPLOYEES_INDEX" (hashed=1, ordered=0)
~Ai add partition "NEW_EMPS_200" : area "EMP_INFO"
~Ai storage area "EMP_INFO" larea=85
~Ai splitting partition #1
~Ai split complete: total 100 keys, moved 37 (dups 0)
~Ai reads: async 136 synch 30, writes: async 57 synch 0
SQL> COMMIT;
SQL> -- Now add a partition after the final partition of
SQL> -- the index. This requires no I/O to the partition because
SQL> -- there is no following partition and therefore no keys
SQL> -- to be moved.
SQL> SET TRANSACTION READ WRITE
cont> RESERVING EMPLOYEES FOR EXCLUSIVE WRITE;
SQL> ALTER INDEX EMPLOYEES_INDEX
cont> ADD PARTITION NEW_EMPS_1400
cont> USING (EMPLOYEE_ID)
cont> IN EMPIDS_OVER WITH LIMIT OF (’01400’);
~Ai alter index "EMPLOYEES_INDEX" (hashed=1, ordered=0)
~Ai add partition "NEW_EMPS_1400" : area "EMPIDS_OVER"
~Ai storage area "EMPIDS_OVER" larea=122
~Ai adding new final partition 3
SQL> COMMIT;
SQL> -- Show the index. It shows the ADD PARTITION syntax appended
SQL> -- to the original source of the index.
SQL> SHOW INDEX EMPLOYEES_INDEX
Indexes on table EMPLOYEES:
EMPLOYEES_INDEX with column EMPLOYEE_ID
No Duplicates allowed
Type is Hashed Scattered
Key Suffix Compression is DISABLED

Store clause: STORE using (EMPLOYEE_ID)
in JOBS with limit of (’00999’)

Add Partition partition NEW_EMPS_200
using (EMPLOYEE_ID)

SQL Statements 6–129

ALTER INDEX Statement

in EMP_INFO with limit of (’00200’)
Add Partition partition NEW_EMPS_1400
using (EMPLOYEE_ID)
in EMPIDS_OVER with limit of (’01400’)

Example 4: Renaming a Partition

$ rmu /extract /item=index mf_personnel.rdb
.
.
.
create unique index EMPLOYEES_HASH

on EMPLOYEES (
EMPLOYEE_ID)
type is HASHED
store

using (EMPLOYEE_ID)
in EMPIDS_LOW(

partition "SYS_P00076"
)
with limit of (’00200’)

in EMPIDS_MID(
partition "SYS_P00077"
)
with limit of (’00400’)

otherwise in EMPIDS_OVER(
partition "SYS_P00078"
);

commit work;
SQL
SQL> ATTACH FILENAME MF_PERSONNEL.RDB;
SQL> ALTER INDEX EMPLOYEES_HASH
cont> RENAME PARTITION SYS_P00076 TO IDS_LOW;
SQL> ALTER INDEX EMPLOYEES_HASH
cont> RENAME PARTITION SYS_P00077 TO IDS_MID;
SQL> ALTER INDEX EMPLOYEES_HASH
cont> RENAME PARTITION SYS_P00078 TO IDS_HIGH;
SQL> COMMIT;
SQL> SHOW INDEX EMPLOYEES_HASH;
Indexes on table EMPLOYEES:
EMPLOYEES_HASH with column EMPLOYEE_ID
No Duplicates allowed
Type is Hashed Scattered
Key Suffix Compression is DISABLED

Store clause: STORE USING (EMPLOYEE_ID)
IN EMPIDS_LOW WITH LIMIT OF (’00200’)
IN EMPIDS_MID WITH LIMIT OF (’00400’)
OTHERWISE IN EMPIDS_OVER

Rename PARTITION SYS_P00076 TO IDS_LOW
Rename PARTITION SYS_P00077 TO IDS_MID
Rename PARTITION SYS_P00078 TO IDS_HIGH

6–130 SQL Statements

ALTER INDEX Statement

Example 5: Creating a Large Index Partitioned Across Many Storage Areas

First, create the database definition:

SQL> CREATE INDEX ... MAINTENANCE IS ENABLED DEFERRED ...;

Next submit batch jobs to build each partition in parallel. For example, each
batch job would execute a script similar to the following:

ATTACH ’filename testdatabase’;
SET FLAGS ’index_stats’;
ALTER INDEX TRANSACTIONS_INDEX BUILD PARTITION PART_1;
COMMIT;

Finally, after the batch jobs have completed, the database administrator must
make the index active for query usage by changing the maintenance mode to
ENABLED IMMEDIATE. A BUILD ALL PARTITIONS clause could be added
in case any step failed (possibly due to resource limitations or a failed node).

SQL> SET FLAGS ’index_stats’;
SQL> SET TRANSLATION READ WRITE RESERVING...FOR EXCLUSIVE WRITES;
SQL> ALTER INDEX ... BUILD ALL PARTITIONS;
SQL> ALTER INDEX ... MAINTENANCE IS ENABLED IMMEDIATE;
SQL> COMMIT;

This scheme has several advantages over issuing a CREATE INDEX statement
directly:

• The build actions can be run in parallel, which allows better resource
usage (read and sort fewer rows), and reduced execution time for the index
creation.

• The partitions being processed are relatively small when compared to the
full index and, therefore, smaller quantities of data will be processed. This
will result in smaller .ruj files and less AIJ file space for these transactions.

• Each build partition runs in a separate transaction, can easily be repeated
if a step fails, and does not require repeating the entire CREATE INDEX
statement.

• If any steps have failed, they will also be repeated by the BUILD ALL
PARTITIONS clause included in the script.

Example 6: Deleting a Large Index Partitioned Across Many Storage Areas

First, disable the index:

SQL> ALTER INDEX TRANSACTIONS_INDEX MAINTENANCE IS DISABLED;

SQL Statements 6–131

ALTER INDEX Statement

Next, submit batch jobs to truncate the partitions in parallel:

SQL> ALTER INDEX TRANSACTIONS_INDEX TRUNCATE PARTITION PART_1;
SQL> COMMIT;

Finally, after the batch jobs are complete, remove the metadata:

SQL> DROP INDEX TRANSACTIONS_INDEX;

This scheme has several advantages over a issuing a DROP INDEX statement
directly:

• The truncate actions can be run in parallel, which allows better resource
usage and reduced execution time for the index deletion.

• The partitions being processed are relatively small when compared to the
full index and, therefore, smaller quantities of data will be processed. This
will result in smaller .ruj files and less AIJ file space for these transactions.

• Each truncate partition runs in a separate transaction, can easily be
repeated if a step fails, and does not require repeating the entire action.

• If any steps have failed, they will also be repeated by a DROP INDEX
statement.

Example 7: Using the TRUNCATE PARTITION statement

The following example illustrates using the TRUNCATE PARTITION
statement for the MF_PERSONNEL database.

SQL> show index (partition) EMPLOYEES_HASH
Indexes on table EMPLOYEES:
EMPLOYEES_HASH with column EMPLOYEE_ID
No Duplicates allowed
Type is Hashed Scattered
Key suffix compression is DISABLED

Partition information for index:
Partition: (1) SYS_P00076
Storage Area: EMPIDS_LOW

Partition: (2) SYS_P00077
Storage Area: EMPIDS_MID

Partition: (3) SYS_P00078
Storage Area: EMPIDS_OVER

SQL> alter index employees_hash truncate partition SYS_P00077;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-IDXBLDPEND, index in build pending state - maintenance is disabled
SQL> insert into employees default values;
%RDB-E-READ_ONLY_REL, relation EMPLOYEES was reserved for read access; updates
not allowed
-RDMS-F-BUILDPENDING, index in build pending state - operation not permitted

6–132 SQL Statements

ALTER INDEX Statement

Until the index is made complete it will not be used by the query optimizer, nor
can the table on which it is defined be updated. The SHOW INDEX command
reports this state.

SQL> show index employees_hash
Indexes on table EMPLOYEES:
EMPLOYEES_HASH with column EMPLOYEE_ID
No Duplicates allowed
Type is Hashed Scattered
Key suffix compression is DISABLED
Maintenance is Deferred - build pending

SQL Statements 6–133

ALTER MODULE Statement

ALTER MODULE Statement

Alters a module to add or drop routines, change a comment, or compile stored
routines.

Environment

You can use the ALTER MODULE statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER MODULE <module-name> alter-module-clauses
END MODULE

alter-module-clauses =

ADD routine-clause
COMMENT IS ’<text-literal>’

/
COMPILE
drop-routine-clause
RENAME TO <new-module-name>

drop-routine-clause =
DROP FUNCTION <routine-name>

PROCEDURE CASCADE
RESTRICT
IF EXISTS

Arguments

ADD routine-clause
Allows new functions and procedures to be added to the module. Refer to the
CREATE MODULE Statement for details on the routine-clause. The END
MODULE clause must be used to end the ALTER MODULE clause to provide
an unambiguous statement termination.

6–134 SQL Statements

ALTER MODULE Statement

COMMENT IS ’string’
Adds a comment about the module. Enclose the comment within single
quotation marks (’) and separate multiple lines in a comment with a
slash mark (/). This clause is equivalent to the COMMENT ON MODULE
statement.

COMPILE
Recompiles stored routines in the module. Any that were marked invalid will
have this flag cleared if the compile was successful.

drop-routine-clause
The DROP FUNCTION and DROP PROCEDURE clauses will drop the
named routines from this module. All DROP clauses are executed prior to the
COMPILE and ADD clauses in this ALTER statement.

END MODULE
This terminating clause is required when using ADD FUNCTION or ADD
PROCEDURE since there is no way to distinguish between the end of a
compound statement and the end of the ALTER MODULE statement.

RENAME TO
Changes the name of the module being altered. See the RENAME Statement
for further discussion. If the new name is the name of a synonym then an
error will be raised.

The RENAME TO clause requires synonyms be enabled for this database.
Refer to the ALTER DATABASE Statement SYNONYMS ARE ENABLED
clause. Note that these synonyms may be deleted if they are no longer used by
database definitions or applications.

The old name will be used to create a synonym for the new name of this
module. This synonym can be dropped if the name is no longer used by
applications.

Usage Notes

• You require ALTER privilege on the referenced module.

• The ALTER MODULE statement causes the RDB$LAST_ALTERED
column of the RDB$MODULES table for the named module to be updated
with the transaction’s timestamp.

SQL Statements 6–135

ALTER MODULE Statement

Examples

Example 1: Changing the comment on a module

A comment can be added or changed on a module using the COMMENT IS
clause as shown in this example.

SQL> alter module EMPLOYEES_MAINTENANCE
cont> comment is
cont> ’routines to add and remove employee rows’
cont> / ’Fix: also record the employees birthday’;
SQL>
SQL> show module EMPLOYEES_MAINTENANCE;
Information for module EMPLOYEES_MAINTENANCE

Header:
EMPLOYEES_MAINTENANCE
Comment: routines to add and remove employee rows

Fix: also record the employees birthday
Module ID is: 7

Routines in module EMPLOYEES_MAINTENANCE:
ADD_EMPLOYEE
IS_CURRENT_EMPLOYEE
REMOVE_EMPLOYEE

Example 2: Revalidating all routines in a module

The COMPILE clause can be used to check each stored procedure or function
to ensure that it can be executed. If the compile fails it will report the first
reason, in this example a missing table.

SQL> alter module EMPLOYEES_MAINTENANCE compile;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-BAD_SYM, unknown relation symbol - ARCHIVE_EMPLOYEES

Example 3: Replacing a routine in a module

The following example creates a simple module and shows the effect of DROP
TABLE . . . CASCADE. That is, the procedure REMOVE_EMPLOYEE is
marked as invalid. The COMPILE clause is used to attempt to re-validate the
procedure, however, a referenced table no longer exists. After replacing the
table the COMPILE completes successfully.

6–136 SQL Statements

ALTER MODULE Statement

SQL> set dialect ’sql99’;
SQL> attach ’file PERSONNEL1’;
SQL>
SQL> create table EMPLOYEES
cont> (employee_id integer,
cont> last_name char(40),
cont> first_name char(40),
cont> birthday date,
cont> start_date date default current_date);
SQL>
SQL> create table ARCHIVE_EMPLOYEES
cont> (employee_id integer,
cont> last_name char(40),
cont> first_name char(40),
cont> archive_date date default current_date);
SQL>
SQL> create module EMPLOYEES_MAINTENANCE
cont>
cont> procedure REMOVE_EMPLOYEE (in :employee_id integer);
cont> begin
cont> -- take copy of the old row
cont> insert into ARCHIVE_EMPLOYEES
cont> (employee_id, last_name, first_name)
cont> select employee_id, last_name, first_name
cont> from EMPLOYEES
cont> where employee_id = :employee_id;
cont> -- remove the old row
cont> delete from EMPLOYEES
cont> where employee_id = :employee_id;
cont> end;
cont>
cont> procedure ADD_EMPLOYEE
cont> (in :employee_id integer,
cont> in :last_name char(40),
cont> in :first_name char(40),
cont> in :birthday date);
cont> insert into EMPLOYEES
cont> (employee_id, last_name, first_name, birthday)
cont> values (:employee_id, :last_name, :first_name, :birthday);
cont>
cont> end module;
SQL>
SQL> show module EMPLOYEES_MAINTENANCE
Information for module EMPLOYEES_MAINTENANCE

Header:
EMPLOYEES_MAINTENANCE
Module ID is: 7

SQL Statements 6–137

ALTER MODULE Statement

Routines in module EMPLOYEES_MAINTENANCE:
ADD_EMPLOYEE
REMOVE_EMPLOYEE

SQL>
SQL> drop table ARCHIVE_EMPLOYEES cascade;
SQL>
SQL> show procedure REMOVE_EMPLOYEE;
Information for procedure REMOVE_EMPLOYEE

Current state is INVALID
Can be revalidated

Procedure ID is: 8
Source:
REMOVE_EMPLOYEE (in :employee_id integer);

begin
-- take copy of the old row
insert into ARCHIVE_EMPLOYEES

(employee_id, last_name, first_name)
select employee_id, last_name, first_name
from EMPLOYEES
where employee_id = :employee_id;

-- remove the old row
delete from EMPLOYEES

where employee_id = :employee_id;
end

No description found
Module name is: EMPLOYEES_MAINTENANCE
Module ID is: 7
Number of parameters is: 1

Parameter Name Data Type Domain or Type
-------------- --------- --------------
EMPLOYEE_ID INTEGER

Parameter position is 1
Parameter is IN (read)
Parameter is passed by reference

6–138 SQL Statements

ALTER MODULE Statement

SQL>
SQL> -- COMPILE reports the missing table
SQL> alter module EMPLOYEES_MAINTENANCE compile;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-BAD_SYM, unknown relation symbol - ARCHIVE_EMPLOYEES
SQL>
SQL> create table ARCHIVE_EMPLOYEES
cont> (employee_id integer,
cont> last_name char(40),
cont> first_name char(40),
cont> birthday date,
cont> archive_date date default current_date);
SQL>
SQL> -- new table definition is compatible
SQL> alter module EMPLOYEES_MAINTENANCE compile;
SQL>
SQL> alter module EMPLOYEES_MAINTENANCE
cont> comment is
cont> ’routines to add and remove employee rows’
cont> / ’Fix: also record the employees birthday’
cont>
cont> drop procedure REMOVE_EMPLOYEE if exists
cont>
cont> add procedure REMOVE_EMPLOYEE (in :employee_id integer);
cont> begin
cont> -- take copy of the old row
cont> insert into ARCHIVE_EMPLOYEES
cont> (employee_id, last_name, first_name, birthday)
cont> select employee_id, last_name, first_name, birthday
cont> from EMPLOYEES
cont> where employee_id = :employee_id;
cont> -- remove the old row
cont> delete from EMPLOYEES
cont> where employee_id = :employee_id;
cont> end;
cont> end module;
SQL>
SQL> show module EMPLOYEES_MAINTENANCE;
Information for module EMPLOYEES_MAINTENANCE

Header:
EMPLOYEES_MAINTENANCE
Comment: routines to add and remove employee rows

Fix: also record the employees birthday
Module ID is: 7

Routines in module EMPLOYEES_MAINTENANCE:
ADD_EMPLOYEE
REMOVE_EMPLOYEE

SQL Statements 6–139

ALTER MODULE Statement

Example 4: Adding a new function to a module

In the following example the ADD clause is used to add a new function to an
existing module.

SQL> alter module EMPLOYEES_MAINTENANCE
cont> add function IS_CURRENT_EMPLOYEE (in :employee_id integer)
cont> returns integer;
cont> return (case
cont> when exists (select *
cont> from EMPLOYEES
cont> where employee_id = :employee_id)
cont> then 1
cont> else 0
cont> end);
cont> end module;
SQL>
SQL> show module EMPLOYEES_MAINTENANCE;
Information for module EMPLOYEES_MAINTENANCE

Header:
EMPLOYEES_MAINTENANCE
Comment: routines to add and remove employee rows

Fix: also record the employees birthday
Module ID is: 7

Routines in module EMPLOYEES_MAINTENANCE:
ADD_EMPLOYEE
IS_CURRENT_EMPLOYEE
REMOVE_EMPLOYEE

6–140 SQL Statements

ALTER OUTLINE Statement

ALTER OUTLINE Statement

Alters an outline definition.

Environment

You can use the ALTER OUTLINE statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER OUTLINE <outline-name>

COMMENT IS ’<string>’
/

COMPILE
MOVE TO <new-schema-name>
RENAME TO <new-outline-name>

Arguments

COMMENT IS string
The COMMENT IS clause can be used to modify the comment stored with the
query outline. The COMMENT ON statement is identical in function to the
ALTER OUTLINE . . . COMMENT IS clause.

This clause is equivalent to the COMMENT ON procedure.

COMPILE
The COMPILE option can be applied to query outlines that have been made
invalid by DROP TABLE or DROP INDEX. If the tables and indices have been
recreated then the query outline will be made valid again. For example, once
re-validated the optimizer will try to use that query outline.

SQL Statements 6–141

ALTER OUTLINE Statement

Note

There is a possibility that the query outline although marked valid will
not be used because of changes in the index definition. There is too
little information stored with the query outline to perform a complete
consistency check. If possible, queries using this outline should be run
to verify correct index and table usage.

If the query outline is currently valid then this clause is ignored by Oracle
Rdb.

MOVE TO
MOVE TO is valid only for multischema databases. You must be attached
explicitly or implicitly with the MULTISCHEMA IS ON clause. The MOVE
TO clause can be used to move the query outline to a different catalog and
schema. An error will be raised if this clause is specified in a non-multischema
environment.

The target catalog and schema must exist in this database.

RENAME TO
The RENAME TO clause can be used to change the name of the outline. The
new name must not already exist in the database.

If RENAME TO is used in a multischema database, attached with
MULTISCHEMA IS ON, then only the multischema name is modified not
the STORED NAME of the object. To change the STORED NAME of the query
outline you must attach to the database explicitly with the MULTISCHEMA IS
OFF clause (see the example below). Please note that the STORED NAME for
the query outline may have been generated by Oracle Rdb.

Note

Any queries using the OPTIMIZE USING clause will also need to be
changed to reference this new outline name.

6–142 SQL Statements

ALTER OUTLINE Statement

Usage Notes

• You require ALTER privilege on the database to execute this statement.

• The outline name can be prefixed with a database alias name. For
example,

SQL> attach ’ALIAS db1 FILENAME mschema_db’;
SQL> alter outline db1.SHOW_TABLES_QUERY
cont> comment is ’used to select SHOW_TAB_INDEX_01’;

In a multischema database the name can also include a schema name and
catalog name.

Examples

Example 1: Changing the comment on a query outline

SQL> alter outline show_tables
cont> comment is ’show the tables query’
cont> / ’derived from a stored procedure’;
SQL> show outline show_tables

SHOW_TABLES
Comment: show the tables query

derived from a stored procedure
Source:
-- Rdb Generated Outline : 8-FEB-2002 16:17
create outline SHOW_TABLES
id ’4D5B5CC5B46C6DD21B0E1999C0EB8BF3’
mode 0
as (

query (
-- For loop

subquery (
RDB$RELATIONS 0 access path index RDB$REL_REL_NAME_NDX
)

)
)

compliance optional ;

SQL Statements 6–143

ALTER OUTLINE Statement

Example 2: Using the alternate COMMENT ON syntax to change the comment

SQL> comment on outline show_tables
cont> is ’show the tables query’
cont> / ’derived from the stored procedure’
cont> / ’SHOW_TABLES’;

Example 3: Changing the name of a query outline

SQL> alter outline show_tables
cont> rename to show_the_tables;
SQL> show outline show_the_tables

SHOW_THE_TABLES
Comment: show the tables query

derived from the stored procedure
testing new COMMENT ON OUTLINE

Source:
-- Rdb Generated Outline : 8-FEB-2002 16:17
create outline SHOW_THE_TABLES
id ’4D5B5CC5B46C6DD21B0E1999C0EB8BF3’
mode 0
as (

query (
-- For loop

subquery (
RDB$RELATIONS 0 access path index RDB$REL_REL_NAME_NDX
)

)
)

compliance optional ;

Example 4: This example shows setting a query outline valid after a DROP
INDEX

First, our stored procedure is executed with the STRATEGY flag defined so we
can see that it is using a query outline named MY_OUTLINE.

SQL> set flags ’strategy’;
SQL> call my_procedure();
~S: Outline "MY_OUTLINE" used
Aggregate Conjunct Index only retrieval of relation MY_TABLE
Index name MY_INDEX [1:1]

6–144 SQL Statements

ALTER OUTLINE Statement

Now the index that was used by the query (and referenced by the query
outline) is dropped. This causes the query outline to be set invalid (as shown
by using the WARN_INVALID flag). The query now uses sequential access
strategy when the stored procedure is executed.

SQL> set flags ’warn_invalid’;
SQL> drop index my_index;
~Xw: Outline "MY_OUTLINE" marked invalid (index "MY_INDEX" dropped)
SQL>
SQL> set flags ’strategy’;
SQL> call my_procedure();
~S: Outline "MY_OUTLINE" is invalid and can not be used
Aggregate Conjunct Get
Retrieval sequentially of relation MY_TABLE
SQL> show outline my_outline

MY_OUTLINE
Outline has been marked invalid
.
.
.

The ALTER OUTLINE ... COMPILE clause is now used to make the outline
valid. The first attempt reports that the index is missing. After the index is
recreated the COMPILE succeeds. Calling the stored procedure now uses this
query outline.

SQL> alter outline my_outline compile;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-INDNOTEXI, index MY_INDEX does not exist in this database
SQL> -- must redefine the index
SQL> create index my_index on my_table (b desc);
SQL> alter outline my_outline compile;
SQL> call my_procedure();
~S: Outline "MY_OUTLINE" used
Aggregate Conjunct Index only retrieval of relation MY_TABLE
Index name MY_INDEX [1:1]

SQL>

SQL Statements 6–145

ALTER OUTLINE Statement

Example 5: Changing the STORED NAME of a query outline in a multischema
database

This example shows how to change the STORED NAME of a multischema
outline. Here we explicitly provide the STORED NAME, however, the same
technique can be used when SQL generates a unique STORED NAME for the
outline.

SQL> attach ’filename mschema’;
SQL> create outline SHOW_TABLE
cont> stored name SHOW_TABLE_01
cont> on procedure name SHOW_TABLES;
SQL> commit;
SQL> disconnect all;
SQL> attach ’filename mschema MULTISCHEMA IS OFF’;
SQL> alter outline SHOW_TABLE_01
cont> rename to SHOW_THE_TABLES;
SQL> commit;

6–146 SQL Statements

ALTER PROCEDURE Statement

ALTER PROCEDURE Statement

Allows attributes to be changed for a procedure that was created using the
CREATE MODULE statement or the CREATE PROCEDURE statement.

It can be used to:

• Force a stored (SQL) procedure to be compiled (COMPILE option)

• Modify attributes of an external procedure

• Change the comment on a procedure

Environment

You can use the ALTER PROCEDURE statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER PROCEDURE <proc-name> COMMENT IS ’<string>’
/

COMPILE
NAME <external-body-name>
external-location-clause
LANGUAGE language-name
notify-clause
bind-site-clause
bind-scope-clause
RENAME TO <new-procedure-name>

SQL Statements 6–147

ALTER PROCEDURE Statement

external-location-clause =

DEFAULT LOCATION
LOCATION ’<image-location>’

WITH ALL LOGICAL_NAME TRANSLATION
SYSTEM

notify-clause =

NOTIFY notify-entry-name ON BIND
CONNECT
TRANSACTION

,

bind-site-clause =

BIND ON CLIENT SITE
SERVER

bind-scope-clause =

BIND SCOPE CONNECT
TRANSACTION

Arguments

BIND ON CLIENT SITE
BIND ON SERVER SITE
Selects the execution model and environment for external routine execution.

CLIENT site binding causes the external routine to be activated and executed
in the OpenVMS database client (application) process. This is the default
binding. This binding offers the most efficient execution characteristics,
allows sharing resources such as I/O devices, and allows debugging of external
routines as if they were part of the client application. However, this binding
may suffer from address space limitations. Because it shares virtual memory
with the database buffers, this binding is restricted to the client process
system user environment, and prohibits external routine execution in cases of
an application running with elevated privileges.

6–148 SQL Statements

ALTER PROCEDURE Statement

SERVER site binding causes the external routine to be activated in a separate
process from the database client and server. The process is started on the
same node at the database process. This binding offers reasonable execution
characteristics, a larger address space, a true session user environment, and
has no restrictions regarding client process elevated privileges. However, this
binding does not permit sharing resources such as I/O devices with the client
(in particular, there is no connection to the client interactive terminal), and
debugging of routines is generally not possible.

BIND SCOPE CONNECT
BIND SCOPE TRANSACTION
Defines the scope during which an external routine is activated and at what
point the external routine is deactivated. The default scope is CONNECT.

• CONNECT

An active routine is deactivated when you detach from the database (or
exit without detaching).

• TRANSACTION

An active routine is deactivated when a transaction is terminated
(COMMIT or ROLLBACK). In the event that a transaction never occurs,
the scope reverts to CONNECT.

COMMENT IS string
Adds a comment about the procedure. SQL displays the text of the comment
when it executes a SHOW PROCEDURES statement. Enclose the comment in
single quotation marks (’) and separate multiple lines in a comment with a
slash mark (/).

This clause is equivalent to the COMMENT ON PROCEDURE statement.

COMPILE
The COMPILE option forces the Oracle Rdb server to recompile the stored
(SQL) procedure. External procedures are not affected.

Use COMPILE when a procedure has been made invalid by the execution of
a DROP . . . CASCADE operation. This mechanism is preferred over the SET
FLAGS ’VALIDATE_ROUTINE’ method available in previous versions.

DEFAULT LOCATION
LOCATION ’image-location’
A default or specific location for the external routine image. The resulting file
specification must include the type .exe.

This can be an image file specification or merely a logical name.

SQL Statements 6–149

ALTER PROCEDURE Statement

SQL selects a routine based on a combination of factors:

• Image string

The location defaults to DEFAULT LOCATION, which represents the file
specification string RDB$ROUTINES.

• Logical name translation

The WITH ALL LOGICAL_NAME TRANSLATION and the WITH
SYSTEM LOGICAL_NAME TRANSLATION clauses specify how logical
names in the location string are to be translated.

If no translation option is specified, or if WITH ALL LOGICAL_NAME
TRANSLATION is specified, logical names are translated in the default
manner.

If WITH SYSTEM LOGICAL_NAME TRANSLATION is specified, any
logical names in the location string are expanded using only EXECUTIVE_
MODE logical names from the SYSTEM logical name table.

external-body-clause
Identifies key characteristics of the routine: its name, where the executable
image of the routine is located, the language in which the routine is coded, and
so forth.

external-body-name
The name of the external routine. If you do not specify a name, SQL uses the
name you specify in the external-routine-name clause.

This name defines the routine entry address that is called for each invocation
of the routine body. The named routine must exist in the external routine
image selected by the location clause.

Unquoted names are converted to uppercase characters.

LANGUAGE language-name
The name of the host language in which the external routine was coded.
You can specify ADA, C, COBOL, FORTRAN, PASCAL, or GENERAL. The
GENERAL keyword allows you to call routines written in any language.

See the Usage Notes for more language-specific information.

notify-clause
Specifies the name of a second external routine called (notified) when certain
external routine or database-related events occur. This name defines the
routine entry address that is called, for each invocation of the notify routine.
The named routine must exist in the external routine image selected by the
location clause.

6–150 SQL Statements

ALTER PROCEDURE Statement

The events of interest to the notify routine are ON BIND, ON CONNECT, and
ON TRANSACTION. Multiple events can be specified.

The following describes the events and scope of each event:

BIND Routine activation to routine deactivation
CONNECT Database attach to database disconnect
TRANSACTION Start transaction to commit or roll back transaction

RENAME TO
Changes the name of the procedure being altered. See the RENAME
Statement for further discussion. If the new name is the name of a synonym
then an error will be raised.

Usage Notes

• You require ALTER privilege on the specified procedure to execute this
statement. If the procedure is part of a module then you must have ALTER
privilege on that module.

• All of the attributes of the ALTER PROCEDURE statement, with the
exception of the COMPILE, COMMENT, and RENAME TO clauses apply
only to external procedures.

• The ALTER PROCEDURE statement causes the RDB$LAST_ALTERED
column of the RDB$ROUTINES table for the named procedure to be
updated with the transactions time stamp.

• The RENAME TO clause requires synonyms be enabled for this database.
Refer to the ALTER DATABASE Statement SYNONYMS ARE ENABLED
clause. Note that these synonyms may be deleted if they are no longer
used by database definitions or applications.

• If a routine has many dependencies then using ALTER is preferred over
a DROP . . . CASCADE and CREATE command sequence because it
maintains the existing dependency information that exists between this
routine and any trigger, stored routine or other database object.

SQL Statements 6–151

ALTER PROCEDURE Statement

Examples

Example 1: Using ALTER PROCEDURE to target a new routine and sharable
image

This example shows ALTER PROCEDURE updating the location, routine name
and language for an external procedure.

SQL> show procedure SEND_MAIL
Information for procedure SEND_MAIL

Procedure ID is: 261
External Location is: SYS$SHARE:SENDMAILSHR.EXE
Entry Point is: SEND_MAIL
Language is: COBOL
GENERAL parameter passing style used
Number of parameters is: 2

Parameter Name Data Type Domain or Type
-------------- --------- --------------
USR CHAR(30)

Parameter position is 1
Parameter is IN (read)
Parameter is passed by reference

TXT VARCHAR(1000)
Parameter position is 2
Parameter is IN (read)
Parameter is passed by reference

SQL> /*
***> The routine has been rewritten. Use ALTER PROCEDURE
***> to retarget the external routine to use the new
***> implementation, instead of using DROP/CREATE
***> */
SQL>
SQL> set quoting rules ’SQL99’;
SQL>
SQL> alter procedure SEND_MAIL
cont> name "send_mail_ext"
cont> location ’SYS$SHARE:SENDMAILSHR30.EXE’
cont> language C
cont> comment ’Use new V3.0 interface routine’;
SQL>

6–152 SQL Statements

ALTER PROFILE Statement

ALTER PROFILE Statement

Alters a profile definition.

Environment

You can use the ALTER PROFILE statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER PROFILE <profilename> profile-options
DEFAULT PROFILE

ALIAS aliasname

profile-options =

COMMENT IS char-literal
/

RENAME TO <new-profile-name>
DEFAULT TRANSACTION txn-options
TRANSACTION MODES (txn-modes)
LIMIT ROWS limit-value

TIME limit-value
CPU TIME limit-value SECONDS

MINUTES

NO DEFAULT TRANSACTION
TRANSACTION MODES
LIMIT CPU TIME

ROWS
TIME

SQL Statements 6–153

ALTER PROFILE Statement

Arguments

ALIAS aliasname
When attached to multiple databases, the aliasname is required to direct the
ALTER command to the appropriate database.

COMMENT IS ’string’
Adds a comment about the profile. SQL displays the text of the comment when
it executes a SHOW PROFILES statement. Enclose the comment in single
quotation marks (’) and separate multiple lines in a comment with a slash
mark (/).

DEFAULT PROFILE
Alters the special profile RDB$DEFAULT_PROFILE. This profile will be
used by any user who is not assigned a profile using the PROFILE clause of
CREATE or ALTER USER.

DEFAULT TRANSACTION
DEFAULT TRANSACTION provides a default transaction for the user. By
default, Oracle Rdb starts a READ WRITE transaction if none is explicitly
started. Use the DECLARE DEFAULT TRANSACTION or START DEFAULT
TRANSACTION statement to make use of this definition. You can override
this clause with a DECLARE or SET TRANSACTION statement.

Note

Oracle Rdb does not permit the RESERVING or EVALUATING clauses
to appear in the default transaction.

LIMIT CPU TIME
NO LIMIT CPU TIME
LIMIT CPU TIME sets the maximum CPU time that can be used by the query
compiler. The keyword DEFAULT indicates that no value is defined by this
profile and is equivalent to NO LIMIT CPU TIME.

If a numeric value or the keyword UNLIMITED is specified then this value will
be used even when the SET QUERY LIMIT CPU TIME statement is present
in the session, or when the logical name RDMS$BIND_QG_CPU_TIMEOUT is
defined.

NO LIMIT CPU TIME is the default. Units can be specified as seconds or
minutes.

6–154 SQL Statements

ALTER PROFILE Statement

LIMIT ROWS
NO LIMIT ROWS
LIMIT ROWS sets the maximum number of rows that can be returned by a
query started by the user. The keyword DEFAULT indicates that no value is
defined by this profile and is equivalent to NO LIMIT ROWS.

If a numeric value or the keyword UNLIMITED is specified then this value
will be used even when the SET QUERY LIMIT ROWS statement is present
in the session, or when the logical name RDMS$BIND_QG_REC_LIMIT is
defined.

NO LIMIT ROWS is the default.

LIMIT TIME
NO LIMIT TIME
LIMIT TIME sets the maximum elapsed time that can be used by the query
compiler. The keyword DEFAULT indicates that no value is defined by this
profile and is equivalent to NO LIMIT TIME.

If a numeric value or the keyword UNLIMITED is specified then this value
will be used even when the SET QUERY LIMIT TIME statement is present in
the session, or when the logical name RDMS$BIND_QG_TIMEOUT is defined.

NO LIMIT TIME is the default. Units can be specified as seconds or minutes.

NO DEFAULT TRANSACTION
NO TRANSACTION MODES
NO LIMIT CPU TIME
NO LIMIT ROWS
NO LIMIT TIME
These options explicitly record the negated attribute setting. These clauses
will remove the current setting of any clause being negated.

RENAME TO
Changes the name of the profile being altered. See the RENAME Statement
for further discussion.

TRANSACTION MODES
NO TRANSACTION MODES
TRANSACTION MODES provides the list of allowable transactions for this
user. Please see the SET TRANSACTION MODES clause of the CREATE
DATABASE and ALTER DATABASE statements for more details of txn-modes.

SQL Statements 6–155

ALTER PROFILE Statement

The transaction modes specified may include modes disabled for all database
users by CREATE, IMPORT, or ALTER DATABASE statements. However,
only the subset allowed by both profile and database settings will be used.
For instance, if the database specifies (READ ONLY, SHARED READ,
PROTECTED READ) and the profile specifies (READ ONLY, SHARED),
the session will be allowed the subset (READ ONLY, SHARED READ).

See the description in the CREATE PROFILE Statement for all other
attributes supported by ALTER PROFILE.

Usage Notes

• You must have SECURITY privilege on the database or OpenVMS
SECURITY privilege to alter a profile.

• It is possible to restrict the transaction modes to READ ONLY using the
default profile. Use caution in this case because it is possible that no user
will have READ WRITE access to undo such a definition. In this case, you
can define the logical name RDMS$SET_FLAGS to the value PROFILE_
OVERRIDE to allow a suitably privileged user to start a transaction
without using the transaction mode restrictions in the default profile. Such
a user must have database SECURITY privilege, possibly inherited from
the OpenVMS SECURITY process privilege.

• See the CREATE PROFILE Statement for further details.

Examples

The following example changes a default transaction for an existing profile.

SQL> ALTER PROFILE DECISION_SUPPORT
cont> DEFAULT TRANSACTION READ ONLY;

6–156 SQL Statements

ALTER ROLE Statement

ALTER ROLE Statement

Allows you to change the role name or add a comment to a role.

Environment

You can use the ALTER ROLE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER ROLE <role-name>
alter-role-opts

alter-role-opts =

IDENTIFIED EXTERNALLY
NOT IDENTIFIED
RENAME TO <new-role-name>
COMMENT IS ’string’

/

Arguments

COMMENT IS ’string’
Adds a comment about the role. SQL displays the text of the comment when it
executes a SHOW ROLES statement. Enclose the comment in single quotation
marks (’) and separate multiple lines in a comment with a slash mark (/).

IDENTIFIED EXTERNALLY
NOT IDENTIFIED
Specifies whether SQL should inherit roles from the operating system. If you
specify one of these clauses, you must specify the same clause as was specified
when the role was created. You cannot use the ALTER ROLE statement to
change roles from IDENTIFIED EXTERNALLY to NOT IDENTIFIED or from
NOT IDENTIFIED to IDENTIFIED EXTERNALLY.

SQL Statements 6–157

ALTER ROLE Statement

The IDENTIFIED EXERNALLY clause indicates that SQL inherits the roles
defined by the facilities of the operating system, such as OpenVMS rights
identifiers.

The NOT IDENTIFIED clause indicates that SQL does not inherit any roles
defined by the facilities of the operating system; instead, the role is private to
the database.

RENAME TO new-role-name
Changes an existing role name to a new role name without changing the
privileges granted to the role. You might change the name of a role that
corresponds to a department name when the department is renamed. For
example, if the personnel department is renamed human resources, you might
change the role used by that department from PERSONNEL to HUMAN_
RESOURCES. The new role name must not already exist in the database.
The old role name is removed from the database when the transaction is
committed. The old role name can be re-created and reused, if desired. If
the new role name is identified externally, then it must exist as an operating
system group or rights identifier.

See the RENAME Statement for further discussion.

role-name
The name of an existing role (such as one created with the CREATE ROLE
statement).

Usage Notes

• You must have the SECURITY privilege on the database or the OpenVMS
SECURITY privilege to alter a role.

• The SHOW PROTECTION and SHOW PRIVILEGE statements will display
the new role name created by the ALTER ROLE statement.

• If you issue the RENAME clause for a role identified externally, then the
new role name must exist at the system level.

6–158 SQL Statements

ALTER ROLE Statement

Example

Example 1: Renaming a Role

SQL> -- Change the name of the role from WRITER to DOCUMENTATION.
SQL> -- Any privileges granted to the role WRITER are transferred to the role
SQL> -- DOCUMENTATION. The role WRITER is deleted from the database.
SQL> ALTER ROLE WRITER
cont> RENAME TO DOCUMENTATION;
SQL> SHOW ROLES;
Roles in database with filename mf_personnel.rdb

DOCUMENTATION

SQL Statements 6–159

ALTER SEQUENCE Statement

ALTER SEQUENCE Statement

Alters a sequence. A sequence is a database object from which multiple users
can generate unique integers. You can use sequences to automatically generate
primary key values.

Environment

You can use the ALTER SEQUENCE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER SEQUENCE <sequence-name> <sequence-attributes>
RENAME TO <new-sequence-name>

sequence-attributes =

INCREMENT BY <numeric-value>
sequence-range
CYCLE
NOCYCLE
CACHE <numeric-value>
NOCACHE
ORDER
NOORDER
RANDOMIZE
NORANDOMIZE
RESTART WITH
WAIT
NOWAIT
DEFAULT WAIT
COMMENT ’<string>’

IS /

6–160 SQL Statements

ALTER SEQUENCE Statement

sequence-range =

MINVALUE <numeric-value>
MAXVALUE TINYINT

SMALLINT
INTEGER
BIGINT

NOMINVALUE
NOMAXVALUE

Arguments

CACHE numeric-value
NOCACHE
The CACHE clause specifies how many values of the sequence Oracle Rdb
should preallocate and keep in memory for faster access. The mumeric value
must be a value between 2 and 2147483647. You cannot cache more values
than will fit in a given cycle of sequence numbers; thus, the maximum value
allowed for the CACHE clause must be less than the value resulting from the
following formula:

(MAXVALUE-MINVALUE)/ABS(INCREMENT)

You can alter the CACHE value if it is currently a value of 2 or higher. When
you alter the CACHE value, existing users of the sequence continue to use
the original setting. You can use the SET FLAGS ’SEQ_CACHE’ statement
to adjust the cache size for a single process. See the See the SET FLAGS
Statement for details.

If NOCACHE is currently enabled or the CACHE value is 1, you can alter the
CACHE value, but may have to wait until other users of the sequence have
released locks on it. (Note that CACHE 1 is equivalent to NOCACHE.) See the
Usage Notes for details.

A cache for a given sequence is populated at the first request for a number
from that sequence, and whenever a value is requested when the cache is
empty. If a system failure occurs, or when the cache is released any unfetched
values will be discarded. The maximum number of lost values is equal to the
current cache size. This may be the value specified by CACHE or by the SET
FLAGS SEQ_CACHE option.

The NOCACHE clause specifies that values will be allocated one at a time.
This will require more I/O to the Rdb root file than using a CACHE value.

SQL Statements 6–161

ALTER SEQUENCE Statement

Note that even after you alter the CACHE value, users who were using the
sequence at the time you altered the CACHE will continue to use the original
setting.

COMMENT IS ’string’
Adds a comment about the sequence. SQL displays the text of the comment
when it executes a SHOW SEQUENCE statement. Enclose the comment in
single quotation marks (’) and separate multiple lines in a comment with a
slash mark (/).

CYCLE
NOCYCLE
The CYCLE clause specifies that the sequence is to continue generating
values after reaching either the MINVALUE or MAXVALUE. After an
ascending sequence reaches the MAXVALUE, the sequence starts again
from its MINVALUE. After a descending sequence reaches its MINVALUE, the
sequence starts again at its MAXVALUE. The NOCYCLE clause specifies that
the sequence should not continue generating values after reaching either its
minimum or maximum value. An error is generated if an attempt is made to
increment the sequence beyond its limits.

Note that even after you alter the CYCLE clause, those who were using the
sequence at the time you altered the CYCLE will continue to use the original
setting.

INCREMENT BY numeric-value
Specifies the size of the increment and the direction (ascending or descending)
of the sequence. This numeric value must be in the range -2147483648 through
2147483647, excluding 0. The absolute value must be less than the difference
between MAXVALUE and MINVALUE. A negative value specifies a descending
sequence; a positive value specifies an ascending sequence. If the existing
value is positive, then the new value must also be positive. Likewise, if the
existing value is negative, then the new value must also be negative. That is,
you cannot change a sequence from ascending to descending or from descending
to ascending.

MAXVALUE numeric-value
NOMAXVALUE
The MAXVALUE clause specifies the maximum BIGINT value that the
sequence can generate. For an ascending sequence, the new maximum value
must be greater than or equal to the existing RDB$NEXT_SEQUENCE_
VALUE. For a descending sequence, the new maximum value must be greater
than or equal to the existing MAXVALUE. This ensures that the MAXVALUE
is not less than any currently issued values. In addition, the numeric value

6–162 SQL Statements

ALTER SEQUENCE Statement

must be between -9223372036854775808 and 9223372036854775808. The
MAXVALUE must be greater than the value specified with the MINVALUE
clause. The NOMAXVALUE clause specifies that the maximum value for an
ascending sequence is 9223372036854775808 (minus the cache size), and -1 for
a descending sequence. The NOMAXVALUE clause is the default.

MAXVALUE TINYINT
MAXVALUE SMALLINT
MAXVALUE INTEGER
MAXVALUE BIGINT
SQL allows the keyword TINYINT, SMALLINT, INTEGER and BIGINT to
follow MAXVALUE instead of a numeric value. This allows easy range setting
for sequences used with these data types. The value supplied will be the
largest positive value that can be assigned to this data type.

SQL allows the keyword TINYINT, SMALLINT, INTEGER and BIGINT to
follow MAXVALUE instead of a numeric value. This allows easy range setting
for sequences used with these data types. The value supplied will be the
largest positive value that can be assigned to this data type.

MINVALUE numeric-value
NOMINVALUE
The MINVALUE clause specifies the minimum signed quadword (BIGINT)
value that the sequence can generate. For an ascending sequence, the new
minimum value must be less than or equal to the existing MINVALUE. For a
descending sequence, the new minimum value must be less than or equal to
the existing RDB$NEXT_SEQUENCE_VALUE. This prevents the minimum
value from being greater than any currently issued values. In addition, the
numeric value must be equal to or greater than -9223372036854775808. The
MINVALUE must be less than the value specified with the MAXVALUE
clause. The NOMINVALUE clause specifies that the minimum value for an
ascending sequence is 1, and -9223372036854775808 (plus the cache size) for a
descending sequence.

The NOMINVALUE clause is the default.

MINVALUE TINYINT
MINVALUE SMALLINT
MINVALUE INTEGER
MINVALUE BIGINT
SQL allows the keyword TINYINT, SMALLINT, INTEGER and BIGINT to
follow MINVALUE instead of a numeric value. This allows easy range setting
for sequences used with these data types. The value supplied will be the
smallest negative value that can be assigned to this data type.

SQL Statements 6–163

ALTER SEQUENCE Statement

ORDER
NOORDER
The ORDER clause specifies that sequence numbers are guaranteed to be
assigned in order for each requesting process, thus maintaining a strict history
of requests. The NOORDER clause specifies that sequence numbers are not
guaranteed to be generated in order of request.

RANDOMIZE
NORANDOMIZE
The RANDOMIZE clause specifies that the sequence numbers are to be
returned with a random value in the most significant bytes of the BIGINT
value. This allows unique values to be generated that have a random
distribution. When you specify the NORANDOMIZE clause, sequence numbers
are close in value to others created at the same time.

The advantage of the RANDOMIZE clause is that updates to columns
of a stored index to which these values are written occur in different
locations in the index structure and so may improve concurrent access for
large indexes as leaf nodes in different parts of the index can be updated
independently. In contrast, the sequence numbers generated when you specify
the NORANDOMIZE clause are likely to be close in numeric value to other
sequence values generated at the same time. This may cause index updates to
occur in the same or nearby index nodes, which may lead to contention in one
part of the sorted index.

The full range of values in the BIGINT value returned for the sequence are
used; therefore, the NOMAXVALUE and NOMINVALUE clauses must be
specified (or defaulted to) for the sequence definition. The most significant
bits of the BIGINT value are set to a randomly generated positive value. A
generated distinct value is returned in the least significant 32 bits so that
uniqueness is guaranteed. If you also specify the CYCLE clause, then only
the least significant 32 bits are cycled. When a query is performed on the
column RDB$NEXT_SEQUENCE_VALUE in the RDB$SEQUENCES table,
only the generated value of the least significant bits is returned, because the
most significant bits are not assigned until the NEXTVAL pseudo column is
referenced.

If you specify RANDOMIZE, you cannot also specify ORDER, MAXVALUE, or
MINVALUE.

RENAME TO
Changes the name of the sequence being altered. See the RENAME Statement
for further discussion. If the new name is the name of a synonym then an
error will be raised.

6–164 SQL Statements

ALTER SEQUENCE Statement

The new name must not exist as the name of an existing sequence, synonym,
table or view. You may not rename a system sequence.

The RENAME TO clause requires synonyms be enabled for this database.
Refer to the ALTER DATABASE Statement SYNONYMS ARE ENABLED
clause. Note that these synonyms may be deleted if they are no longer used by
database definitions or applications.

RESTART WITH
The RESTART WITH clause allows the database administrator to reset
the sequence to a specified value. The value must be within the range of
MINVALUE and MAXVALUE. This command requires exclusive access to the
sequence. Once the ALTER SEQUENCE statement is successfully committed,
applications that use the sequence will start with a value based on the
restarted value.

Note

The TRUNCATE TABLE statement issued for a table with an
IDENTITY column implicitly executes an ALTER SEQUENCE...RESTART
WITH process on the sequence, applying the MINVALUE if it is an
ascending sequence, or MAXVALUE if it is a descending sequence.

sequence-name
The name of the sequence whose definition you want to change.

WAIT
NOWAIT
DEFAULT WAIT
Specifies which wait state is used when a reference to NEXTVAL is used.
A reference to NEXTVAL for a sequence may require synchronization with
other users of the sequence. When you specify DEFAULT WAIT the wait state
(WAIT or NOWAIT) of the current transaction is used. This may mean that no
waiting is performed during a NOWAIT transaction.

If you specify WAIT (the default) for the sequence, then regardless of the
wait state set for the current transaction, all synchronization waits for the
next value. This is the recommended setting if the application uses NOWAIT
transactions. The current WAIT timeout interval defined for the transaction or
database is used.

If you specify NOWAIT for the sequence, then regardless of the current
transaction setting, all synchronization will not wait for the next value.

SQL Statements 6–165

ALTER SEQUENCE Statement

Note that even after you alter the WAIT value, users who were using the
sequence at the time you altered WAIT will continue to use the original
setting.

Usage Notes

• You must have the ALTER privilege on the sequence to alter a sequence.

• If another user holds an exclusive lock on a sequence when you attempt to
alter the sequence, your process will wait to execute the statement until
the other user commits or rolls back his or her transaction. An exclusive
lock is placed on a sequence when a user is altering any of the following
attributes:

INCREMENT BY

MINVALUE to NOMINVALUE, or the reverse

MAXVALUE to NOMAXVALUE, or the reverse

NOCACHE to CACHE

ORDER to NOORDER, or the reverse

• The value for the RDB$LAST_ALTERED column in the RDB$SEQUENCES
system relation is updated by the ALTER SEQUENCE command.

• The value of RDB$NEXT_SEQUENCE_VALUE is not altered by this
command.

• Note that sequences with the CYCLE attribute are no longer guaranteed to
return unique values.

Examples

Example 1: Altering a sequence

6–166 SQL Statements

ALTER SEQUENCE Statement

SQL> -- Show current sequence definition:
SQL> --
SQL> SHOW SEQUENCE EMPIDS

EMPIDS
Sequence Id: 1
Initial Value: 1
Minimum Value: 1
Maximum Value: 9223372036854775787
Next Sequence Value: 1
Increment by: 1
Cache Size: 20
No Order
No Cycle
No Randomize
SQL> --
SQL> -- Alter the sequence.
SQL> --
SQL> ALTER SEQUENCE EMPIDS
cont> MINVALUE 0
cont> MAXVALUE 2000
cont> CACHE 30
cont> ORDER
cont> CYCLE;
SQL> --
SQL> -- Show new definition.
SQL> --
SQL> SHOW SEQUENCE EMPIDS

EMPIDS
Sequence Id: 1
Initial Value: 1
Minimum Value: (none)
Maximum Value: 2000
Next Sequence Value: 1
Increment by: 1
Cache Size: 30
Order
Cycle
No Randomize

Example 2: Reset the sequence to a specified value

SQL Statements 6–167

ALTER SEQUENCE Statement

SQL> show sequence NEW_EMPLOYEE_ID
NEW_EMPLOYEE_ID

Sequence Id: 1
Initial Value: 472
.
.
.

SQL>
SQL> alter sequence NEW_EMPLOYEE_ID
cont> restart with 500;
SQL>
SQL> show sequence NEW_EMPLOYEE_ID

NEW_EMPLOYEE_ID
Sequence Id: 1
Initial Value: 500
.
.
.

SQL>

6–168 SQL Statements

ALTER STORAGE MAP Statement

ALTER STORAGE MAP Statement

Changes an existing storage map. A storage map controls which rows of a
table are stored in which storage areas in a multifile database.

In addition to changing storage maps, the ALTER STORAGE MAP statement
has options that change the following:

• Which index the database system uses when inserting rows in the table

• Whether or not the rows of the table are stored in a compressed format

• Whether or not the data is reorganized

• Whether partitioning keys can be modified

• Whether logging the transaction containing the ALTER statement is
journaled to the RUJ and AIJ files.

Environment

You can use the ALTER STORAGE MAP statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SQL Statements 6–169

ALTER STORAGE MAP Statement

ALTER STORAGE MAP <map-name>

ENABLE COMPRESSION
DISABLE

COMPILE
NO PLACEMENT VIA INDEX
PLACEMENT VIA INDEX <index-name>
RENAME PARTITION <partition-name> TO <new-partition-name>
REORGANIZE

AREAS
PAGES

NO REORGANIZE
store-clause
PARTITIONING IS UPDATABLE
PARTITIONING IS NOT UPDATABLE
threshold-clause
LOGGING
NOLOGGING
COMMENT IS ’string’

/

store-list-clause

store-clause =

STORE IN area-spec
across-clause
using-clause

area-spec =

<area-name>
(threshold-clause)

LOGGING
NOLOGGING
PARTITION <name>
COMMENT IS ’string’

/
,

across-clause =

RANDOMLY ACROSS

(area-spec)
,

6–170 SQL Statements

ALTER STORAGE MAP Statement

using-clause =

USING (<column-name>)
,

IN area-spec WITH LIMIT OF (<literal>)
,

OTHERWISE IN area-spec

threshold-clause =

THRESHOLD IS (<val1>)
OF

THRESHOLDS ARE
OF

(<val1>)
, <val2>

, <val3>

store-lists-clause =

STORE LISTS

IN area-spec
(area-spec)

,

FOR (<table-name>)
<table-name.col-name>

,

FILL RANDOMLY
FILL SEQUENTIALLY

SQL Statements 6–171

ALTER STORAGE MAP Statement

Arguments

AREAS
Specifies that the target of the data reorganization is storage areas. All rows
are checked to see if they are in the correct storage area and if some are not,
they are moved. This is the default.

COMMENT IS ’string’
Adds or alters a comment about the storage map. SQL displays the text of
the comment when it executes a SHOW STORAGE MAPS statement. Enclose
the comment in single quotation marks (’) and separate multiple lines in a
comment with a slash mark (/).

COMPILE
Creates a SQL mapping routine that matches the WITH LIMIT OF clause for
the storage map. The routine is automatically created in the system module
RDB$STORAGE_MAPS (use SHOW SYSTEM MODULES to view). The
storage map name is used to name the mapping routine (use SHOW SYSTEM
FUNCTIONS to view).

Note

If a routine already exists with the same name as the storage map,
then the mapping routine will not be created.

If the storage map includes a STORE COLUMNS clause, that is, a
vertically partitioned map, then several routines will be created and
uniquely named by adding the vertical partition number as a suffix.

The mapping routine returns the following values:

• Zero (0) if the storage map is defined as RANDOMLY ACROSS. This
routine is just a descriptive place holder.

• Positive value representing the storage map number (the same value as
stored in RDB$ORDINAL_POSITION column of the RDB$STORAGE_
MAP_AREAS table). These values can be used with the PARTITION
clause of the SET TRANSACTION...RESERVING clause to reserve a
specific partition prior to inserting the row.

• A value of -1 if the storage map has no OTHERWISE clause. This indicates
that the row cannot be inserted because it does not match any of the WITH
LIMIT OF clauses.

6–172 SQL Statements

ALTER STORAGE MAP Statement

ENABLE COMPRESSION
DISABLE COMPRESSION
Changes whether the rows for the table are compressed or uncompressed when
stored. Enabling compression conserves disk space, but it incurs additional
CPU overhead for inserting and retrieving compressed rows.

Changing the COMPRESSION clause causes the database system to read all
the rows in the table and write them back to the table in the changed format.
If compression is enabled and you subsequently disable it, records may become
fragmented because the space allowed for the record is no longer large enough.

FILL RANDOMLY
FILL SEQUENTIALLY
Specifies whether to fill the area set randomly or sequentially. Specifying
FILL RANDOMLY or FILL SEQUENTIALLY requires a FOR clause. When
a storage area is filled, it is removed from the list of available areas. Oracle
Rdb does not attempt to store any more lists in that area during the current
database attach. Instead, Oracle Rdb starts filling the next specified area.

When a set of areas is filled sequentially, Oracle Rdb stores lists in the first
specified area until that area is filled.

If the set of areas is filled randomly, lists are stored across multiple areas.
This is the default. Random filling benefits from the I/O distribution across the
storage areas.

The keywords FILL RANDOMLY and FILL SEQUENTIALLY can only be
applied to areas contained within an area list.

FOR (table-name)
Specifies the table or tables to which this storage map applies. The named
table must already be defined. If you want to store lists of more than one table
in the storage area, separate the names of the tables with commas. For each
area, you can specify one FOR clause and a , do not use this statement unless
all areas specified list of table names.

FOR (table-name.col-name)
Specifies the name of the table and column containing the list to which this
storage map applies. Separate the table name and the column name with a
period (.). The named table and column must already be defined. If you want
to store multiple lists in the storage area, separate the table name and column
name combinations with commas. For each area, you can specify one FOR
clause and a list of column names.

SQL Statements 6–173

ALTER STORAGE MAP Statement

LOGGING
The LOGGING clause specifies that the ALTER STORAGE MAP statement
should be logged in the recovery-unit journal file (.ruj) and after-image journal
file (.aij). The LOGGING clause is the default.

NOLOGGING
The NOLOGGING clause specifies that the ALTER STORAGE MAP statement
should not be logged in the recovery-unit journal file (.ruj) and after-image
journal file (.aij).

NO PLACEMENT VIA INDEX
Negates the PLACEMENT VIA INDEX clause so that subsequent records
stored are not stored by means of the index named in the PLACEMENT VIA
INDEX clause. If you specify the ALTER STORAGE MAP statement without
the PLACEMENT VIA INDEX argument or the NO PLACEMENT VIA INDEX
argument, the statement executes as if the clause specified on the CREATE
STORAGE MAP statement or last ALTER STORAGE MAP statement was
used.

NO REORGANIZE
Disables the reorganize action for PARTITIONING IS NOT UPDATABLE.

PAGES
Specifies that the target of the data reorganization is database pages. All rows
are checked to determine whether they are in the correct storage area and if
some are not, they are moved. Then, all rows are checked if any should be
moved within each storage area, and these rows are moved if there is space on
or closer to the new target page.

PARTITION name
Names the partition. The name can be a delimited identifier if the dialect is
set to SQL99. Partition names must be unique within the storage map. If
you do not specify this clause, Oracle Rdb generates a default name for the
partition.

PARTITIONING IS UPDATABLE
Specifies that the partitioning key can be modified. The partitioning key is the
column or list of columns specified in the STORE USING clause.

See the Oracle Rdb Guide to Database Design and Definition for more
information regarding partitioning.

PLACEMENT VIA INDEX index-name
See the CREATE STORAGE MAP Statement for details of the PLACEMENT
VIA INDEX argument.

6–174 SQL Statements

ALTER STORAGE MAP Statement

RENAME PARTITION partition-name TO new-partition-name
Specifies a new name for an existing storage map partition.

REORGANIZE
Causes new rows and rows previously stored in specified tables to be moved
according to the partitions specified in the STORE clause of the ALTER
STORAGE MAP statement. The REORGANIZE clause works for one or more
areas in the storage maps.

For details of how rows are moved or not moved among storage areas
depending on whether or not the REORGANIZE argument is specified, see
the Oracle Rdb Guide to Database Design and Definition.

STORAGE MAP map-name
Specifies the name of the storage map you want to alter.

store-clause
A new storage map definition that replaces the existing storage map. The
store-clause allows you to specify which storage area files will be used to store
rows from the table. Note that:

• All rows of a table can be associated with a single storage area.

• Rows of a table can be distributed among several storage areas.

• Rows of a table can be systematically distributed (horizontally partitioned)
among several storage areas by specifying upper limits on the values for a
column in a particular storage area.

The store-clause specifies only how you want to associate rows with areas and
not the manner in which rows are assigned to pages within an area.

See the CREATE STORAGE MAP Statement for a description of the syntax for
the store-clause. However, the effect of the clause in the ALTER STORAGE
MAP statement depends on how you change the existing storage map.

STORE LISTS IN area-name
Directs the database system to store the lists from tables in a specified storage
area. You can store lists from different tables in the same area. You can create
only one storage map for lists within each database.

You must specify the default storage area for lists. This should be the LIST
STORAGE AREA specified on CREATE DATABASE, or if none, the DEFAULT
STORAGE AREA, or if none, then it will be RDB$SYSTEM.

For more information, see the CREATE STORAGE MAP Statement.

SQL Statements 6–175

ALTER STORAGE MAP Statement

threshold-clause
Specifies SPAM thresholds for logical areas with uniform format pages.

When you specify the THRESHOLD clause without enclosing it in parentheses,
you are specifying the default threshold values for all areas specified in the
ALTER STORAGE MAP statement. You cannot alter the thresholds for any
storage areas which are part of the storage map. Only specify this clause for
storage areas being added to the storage area by the ALTER STORAGE MAP
statement.

To specify threshold values for a particular storage area, specify the clause as
part of the STORE clause and enclose the THRESHOLD clause in parentheses.
You can only specify threshold values for new areas, not existing ones.

For examples of specifying the THRESHOLD clause, see the Oracle Rdb
Guide to Database Design and Definition. See the CREATE STORAGE MAP
Statement for a description of the THRESHOLDS clause.

Usage Notes

• Attempts to alter a storage map fail if that storage map refers to a table
that is involved in a query at the same time. Users must detach from the
database with a DISCONNECT statement before you can alter the storage
map. When Oracle Rdb first accesses an object, such as the storage map,
a lock is placed on that object and not released until the user exits the
database. If you attempt to update this object, you get a lock conflict on
client message due to the other user’s access to the object.

Similarly, while you alter a storage map, users cannot execute queries
involving tables that a storage map refers to until you complete the
transaction with a COMMIT or ROLLBACK statement for the ALTER
statement. The user receives a lock conflict on client error message. While
DDL operations are performed, normal data locking mechanisms are used
against system tables. Therefore, attempts to update an object lock out
attempts to query that object. These locks are held until the DDL operation
is committed or rolled back.

• The following notes describe the behavior of the REORGANIZE clause:

If storage areas were named in the original storage map but are not
now named in the ALTER STORAGE MAP STORE clause, then those
rows will be moved from those areas and stored according to the new
map definition. The moved row from this table will be deleted from the
no longer referenced storage areas.

6–176 SQL Statements

ALTER STORAGE MAP Statement

If the new storage map definition specifies the REORGANIZE AREAS
clause, Oracle Rdb checks all other rows to determine whether or not
they are in the correct storage area. If the rows are not in the correct
storage area, they are deleted from their current storage area and
stored in the correct one.

If the ALTER STORAGE MAP statement specifies a REORGANIZE
PAGES clause, Oracle Rdb checks which rows can be moved to the
pages where they would be placed if they were being stored as new
rows. If the rows fit on those preferred pages or pages closer to the
preferred pages than they currently are, they are moved.

If the new storage map definition includes the WITH LIMIT OF clause
when you specify the REORGANIZE clause, all rows are read and
stored again, whether or not you give new values for the limits.

If the new storage map definition includes only the COMPRESSION
clause, all rows are read, the compression characteristics are changed,
and all rows are stored again, whether or not you specify the
REORGANIZE clause.

• If you do not specify the REORGANIZE clause as part of the ALTER
STORAGE MAP statement and the new storage map definition omits the
name of a storage area that was in the original storage map definition,
Oracle Rdb treats the database rows in the following ways:

The rows are unloaded from the omitted storage area to the specified
areas, according to the new storage map.

The rows are stored into the named storage areas according to the
specified WITH LIMIT OF clause.

The rows are compressed according to the characteristics specified in
the COMPRESSION clause.

• Do not use the ALTER STORAGE MAP statement to reorganize or
otherwise modify read-only storage areas. If a storage area was designated
as read-only, you must change it to a read/write storage area before using
the ALTER STORAGE MAP statement to modify it.

• You can store lists and tables in separate storage areas.

• If a list storage map refers to a storage area, you cannot delete that area.
You can, however, add another storage area.

• If you repeat a column or table in the storage map with a different
area, then all columns of data type LIST OF BYTE VARYING are stored
randomly across the specified areas.

SQL Statements 6–177

ALTER STORAGE MAP Statement

• If a storage map does not contain an overflow partition (defined by the
OTHERWISE clause), you can alter the storage map and add new trailing
partitions without reorganizing the storage areas. For more information,
see the Usage Notes in the CREATE STORAGE MAP Statement.

• If a storage map contains an overflow partition and you want to alter the
storage map to rid it of the overflow partition, you do not need to use the
REORGANIZE clause. If possible, Oracle Rdb moves the existing data to
the appropriate storage area. However, it is possible that some rows cannot
be moved because the partitioning key value violates the WITH LIMIT OF
clause for the new final partition.

• If a storage map contains an overflow partition and you want to alter the
storage map to change the overflow partition to a partition defined with
the WITH LIMIT OF clause, you must use the REORGANIZE clause if you
want existing data that is stored in the overflow partition moved to the
appropriate storage area.

For more information about omitting overflow partitions (and altering
storage maps in general), see the Oracle Rdb Guide to Database Design
and Definition.

• An existing storage map can be converted to a strictly partitioned storage
map using the ALTER STORAGE MAP . . . PARTITIONING IS NOT
UPDATABLE clause.

This statement implicitly performs a reorganize operation on the base
table, moving rows within the map if necessary, but at least scanning the
storage areas to make sure all the stored data conforms to the storage map
definition. This allows the Oracle Rdb optimizer to use this type of table
efficiently when a sequential scan uses a subset of the storage areas.

In many cases, the database administrator knows that a large table is
already strictly partitioned, but it is prohibitive to reorganize the table.
The amount of I/O alone might last several hours. Therefore, the database
administrator can bypass the automatic reorganize operation performed by
the ALTER STORAGE MAP . . . PARTITIONING IS NOT UPDATABLE
clause by using a NO REORGANIZE clause.

Because Oracle Rdb has not validated the table partitioning, there is a risk
that rows may be missed by sequential scans. The database administrator
must take this risk into account when using this clause. Oracle
Corporation suggests that an ALTER STORAGE MAP . . . REORGANIZE
operation be carried out as soon as practical.

6–178 SQL Statements

ALTER STORAGE MAP Statement

When the NO REORGANIZE clause is used, Oracle Rdb records this
information in the Oracle Rdb system relations. The SHOW STORAGE
MAP statement will display informational text. Use SET FLAGS
STOMAP_STATS to see a trace of the reorganize actions.

• The NO REORGANIZE clause is ignored unless used with PARTITIONING
IS NOT UPDATABLE. This is because either no automatic reorganization
is required, or a full rebuild of the table is needed to implement the new
map structure.

• The REORGANIZE and NO REORGANIZE clause may not appear in
the same ALTER STORAGE MAP command, as shown in the following
example:

SQL> ALTER STORAGE MAP EMPLOYEES_MAP
cont> PARTITIONING IS NOT UPDATABLE
cont> NO REORGANIZE
cont> REORGANIZE AREAS
cont> STORE
cont> USING (EMPLOYEE_ID)
cont> IN EMPIDS_LOW
cont> WITH LIMIT OF (’00200’)
cont> IN EMPIDS_MID
cont> WITH LIMIT OF (’00400’)
cont> OTHERWISE IN EMPIDS_OVER;
%SQL-F-MULTSPECATR, Multiple specified attribute. "REORGANIZE" was specified
more than once

• The SET FLAGS option, STOMAP_STATS, will output an indication that
NO REORGANIZE was used.

• The SHOW STORAGE MAPS statement will output an indication that NO
REORGANIZE was used, as shown in the following example:

SQL> SHOW STORAGE MAPS EMPLOYEES_MAP
EMPLOYEES_MAP

For Table: EMPLOYEES
Placement Via Index: EMPLOYEES_HASH
Partitioning is: NOT UPDATABLE
Strict partitioning was not validated for this table
. . .

SQL Statements 6–179

ALTER STORAGE MAP Statement

Examples

Example 1: Reorganizing storage area data using the ALTER STORAGE MAP
statement

The following example defines a new storage area, EMPIDS_MID2, to handle
the employee ID numbers from 601 to 900 and to reorganize the data from
an existing storage area, EMPIDS_OVER. The current data that is stored for
employees with employee ID numbers from 601 to 900 is moved according to
the new limits. Because no AREA or PAGE option is specified, the default
method of reorganization is by storage areas.

SQL> ALTER DATABASE FILENAME mf_personnel ADD STORAGE AREA
cont> EMPIDS_MID2 PAGE FORMAT IS MIXED;
SQL> ATTACH ’FILENAME mf_personneL’;
SQL> ALTER STORAGE MAP EMPLOYEES_MAP
cont> STORE USING (EMPLOYEE_ID)
cont> IN EMPIDS_LOW WITH LIMIT OF (’00300’)
cont> IN EMPIDS_MID WITH LIMIT OF (’00600’)
cont> IN EMPIDS_MID2 WITH LIMIT OF (’00900’)
cont> OTHERWISE IN EMPIDS_OVER
cont> REORGANIZE;

Example 2: Enabling compression with an ALTER STORAGE MAP statement

The following example defines a new storage map, UNIFORM1_MAP, and
specifies thresholds for the logical area in the UNIFORM1 storage area. The
ALTER STORAGE MAP statement is used to enable row compression.

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ADD STORAGE AREA UNIFORM1;
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> CREATE TABLE TEST (COL1 REAL);
SQL> CREATE STORAGE MAP UNIFORM1_MAP FOR TEST
cont> STORE IN UNIFORM1
cont> (THRESHOLDS ARE (80,90,95));
SQL> ALTER STORAGE MAP UNIFORM1_MAP
cont> STORE IN UNIFORM1
cont> ENABLE COMPRESSION;

Example 3: Changing an overflow partition to a WITH LIMIT OF partition

To change the overflow partition to a partition defined with the WITH LIMIT
OF clause, you must use the REORGANIZE clause if you want existing data
that is stored in the overflow partition moved to the appropriate storage
area. For example, suppose the JOB_HISTORY table contains a row with an
EMPLOYEE_ID of 10001 and the JH_MAP storage map is defined, as shown
in the following example:

6–180 SQL Statements

ALTER STORAGE MAP Statement

SQL> SHOW STORAGE MAP JH_MAP
JH_MAP

For Table: JOB_HISTORY
Compression is: ENABLED
Store clause: STORE USING (EMPLOYEE_ID)

IN PERSONNEL_1 WITH LIMIT OF (’00399’)
IN PERSONNEL_2 WITH LIMIT OF (’00699’)

OTHERWISE IN PERSONNEL_3
SQL>

If you want to change the PERSONNEL_3 storage area from an overflow
partition to a partition with a limit of 10,000 and add the partition
PERSONNEL_4, you must use the REORGANIZE clause to ensure that
Oracle Rdb moves existing rows to the new storage area. The following
example shows the ALTER STORAGE MAP statement that accomplishes this
change:

SQL> ALTER STORAGE MAP JH_MAP
cont> STORE USING (EMPLOYEE_ID)
cont> IN PERSONNEL_1 WITH LIMIT OF (’00399’)
cont> IN PERSONNEL_2 WITH LIMIT OF (’00699’)
cont> IN PERSONNEL_3 WITH LIMIT OF (’10000’)
cont> IN PERSONNEL_4 WITH LIMIT OF (’10399’)
cont> REORGANIZE;
SQL>

Example 4: Disabling Logging to the RUJ and AIJ files

SQL> ATTACH’FILENAME MF_PERSONNEL.RDB’;
SQL> ALTER STORAGE MAP EMPLOYEES_MAP
cont> STORE
cont> USING (EMPLOYEE_ID)
cont> IN EMPIDS_LOW
cont> WITH LIMIT OF (’00200’)
cont> IN JOBS
cont> (NOLOGGING)
cont> WITH LIMIT OF (’00400’)
cont> OTHERWISE IN EMPIDS_OVER;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-DATACMIT, unjournaled changes made; database may not be recoverable

SQL Statements 6–181

ALTER STORAGE MAP Statement

Example 5: Disabled Area Scan for PARTITIONING IS NOT UPDATABLE

When a storage map is altered to be NOT UPDATABLE a REORGANIZE scan
is implicitly executed to check that all rows are in the correct storage area
according to the WITH LIMIT OF clauses in the storage map. This scan can
be time consuming, and an informed database administrator may know that
the data already conforms fully to the storage map. The NO REORGANIZE
clause is used in the following example to avoid the extra I/O. The database
administrator must understand that use of this clause might lead to incorrect
query results (for sequential scans) if the storage map does not reflect the
correct row mapping.

SQL> SET FLAGS ’stomap_stats’;
SQL> ALTER STORAGE MAP EMPLOYEES_MAP
cont> PARTITIONING IS NOT UPDATABLE
cont> NO REORGANIZE
cont> STORE
cont> USING (EMPLOYEE_ID)
cont> IN EMPIDS_LOW
cont> WITH LIMIT OF (’00200’)
cont> IN EMPIDS_MID
cont> WITH LIMIT OF (’00400’)
cont> OTHERWISE IN EMPIDS_OVER;
~As: starting map restructure...
~As: REORGANIZE needed to preserve strict partitioning
~As: NO REORGANIZE was used to override scan
~As: reads: async 0 synch 21, writes: async 7 synch 3
SQL>
SQL> SHOW STORAGE MAPS EMPLOYEES_MAP

EMPLOYEES_MAP
For Table: EMPLOYEES
Placement Via Index: EMPLOYEES_HASH
Partitioning is: NOT UPDATABLE
Strict partitioning was not validated for this table
Comment: employees partitioned by "00200" "00400"
Store clause: STORE

using (EMPLOYEE_ID)
in EMPIDS_LOW

with limit of (’00200’)
in EMPIDS_MID

with limit of (’00400’)
otherwise in EMPIDS_OVER

Compression is: ENABLED
SQL>

6–182 SQL Statements

ALTER STORAGE MAP Statement

A subsequent ALTER STORAGE MAP . . . REORGANIZE statement will
validate the partitioning, as shown in the following example:

SQL> ALTER STORAGE MAP EMPLOYEES_MAP
cont> PARTITIONING IS NOT UPDATABLE
cont> REORGANIZE;
~As: starting map restructure...
~As: starting REORGANIZE...
~As: reorganize AREAS...
~As: processing rows from area 69
~As: processing rows from area 70
~As: processing rows from area 71
~As: reads: async 408 synch 22, writes: async 3 synch 0
SQL>

Example 6: Redefining a SQL routine that matches the WITH LIMIT OF
clause for the storage map

The ALTER STORAGE MAP command removes any old mapping routine and
redefines it when either the STORE clause is used, or if the COMPILE option
is used.

SQL> alter storage map EMPLOYEES_MAP
cont> store
cont> using (EMPLOYEE_ID)
cont> in EMPIDS_LOW
cont> with limit of (’00200’)
cont> in EMPIDS_MID
cont> with limit of (’00400’)
cont> in EMPIDS_OVER
cont> with limit of (’00800’);
SQL>
SQL> show system function (source) EMPLOYEES_MAP;
Information for function EMPLOYEES_MAP

Source:
return

case
when (:EMPLOYEE_ID <= ’00200’) then 1
when (:EMPLOYEE_ID <= ’00400’) then 2
when (:EMPLOYEE_ID <= ’00800’) then 3
else -1

end case;

SQL Statements 6–183

ALTER SYNONYM Statement

ALTER SYNONYM Statement

Alters a synonym definition.

Environment

You can use the ALTER SYNONYM statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format
ALTER SYNONYM <synonym-name>

FOR <object-name>

COMMENT IS ’string’
/

Arguments

COMMENT IS string
This clause can be used to add several lines of comment to the synonym object.
The SHOW SYNONYM statement displays the comment.

This clause is equivalent to the COMMENT ON SYNONYM statement.

FOR object-name
You may change the synonym to reference a different database object; however,
it must be of the same type. Oracle Rdb assumes that the object has the same
or similar characteristics as the referenced object. The referenced object must
exist in the database.

synonym-name
The name of an existing synonym you want to alter.

6–184 SQL Statements

ALTER SYNONYM Statement

Usage Notes

• An error is generated if this statement is used on a database that has not
been enabled for synonyms. See the ALTER DATABASE ... SYNONYMS
ARE ENABLED clause.

• You must have database ALTER privilege in order to execute the ALTER
SYNONYM statement.

• You must have REFERENCES privilege on the referenced object to alter a
synonym for that object. Because domains do not have access control, no
other privileges are required to alter synonyms for domains.

• You can alter synonyms for synonyms. Therefore, it is possible to create
a cycle within a chain of synonyms. Oracle Rdb will detect this cycle and
reject the definition.

Examples

Example 1: Adding a Comment

SQL> ALTER SYNONYM CASH
cont> COMMENT IS ’use a different name to avoid confusion with’
cont> / ’the domain MONEY’;

Example 2: Using Multiple Synonyms and Changing the Referenced Table
Using ALTER

The following example uses a synonym to reference a table. Later an empty
version of the table can be created and the synonym altered to reference this
new table. Although similar to using a view definition, the use of synonyms
avoid the usage locking of a view. That is, to drop and create a new view
requires that no other user references that view, however, the alter synonym
does not require exclusive access to the table.

SQL> CREATE TABLE t_employees_0001 (...);
SQL> CREATE SYNONYM employees FOR t_employees_0001;
SQL> CREATE SYNONYM emps FOR employees;
SQL> CREATE TABLE t_employees_0002 LIKE t_employees_0001;
SQL> ALTER SYNONYM employees FOR t_employees_0002;

SQL Statements 6–185

ALTER TABLE Statement

ALTER TABLE Statement

Changes an existing table definition. You can:

• Add columns

• Add constraints to tables or columns

• Modify columns

• Modify character sets

• Modify data types

• Delete columns

• Delete constraints

The ALTER TABLE statement can also add or delete table-specific constraints.
You can display the names for all constraints currently associated with a table
by using the SHOW TABLE statement. Any number of constraints can be
deleted and declared at both the table and column levels. See also the ALTER
CONSTRAINT Statement and the DROP CONSTRAINT Statement.

When you execute this statement, SQL modifies the named column definitions
in the table. All of the columns that you do not mention remain unchanged.
SQL defines new versions of columns before defining constraints. Then, SQL
defines and evaluates constraints before storing them. Therefore, if columns
and constraints are defined in the same table definition, constraints always
apply to the latest version of a column.

When you change a table definition, other users see the revised definition only
when they connect to the database after you commit the changes.

Environment

You can use the ALTER TABLE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

6–186 SQL Statements

ALTER TABLE Statement

Format

ALTER TABLE <table-name>

ADD COLUMN col-definition
CONSTRAINT table-constraint
(col-definition)

,
ALTER COLUMN alter-col-definition
MODIFY (alter-col-definition)

,
DROP COLUMN <column-name>

CONSTRAINT <constraint-name>
enable-clause
disable-clause
RENAME TO <new-table-name>
COMMENT IS ’<quoted-string>’

/

col-definition =

<column-name>

add-column-type
DEFAULT value-expr
column-identity

COMPUTED BY value-expr

col-constraint position-clause

sql-and-dtr-clause

add-column-type =

data-type
<domain-name>
<references-clause>
AUTOMATIC AS value-expr

INSERT
UPDATE

SQL Statements 6–187

ALTER TABLE Statement

column-identity =

IDENTITY
(<start-with>)

, <increment-by>

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
FLOAT
NUMBER

(<p>)
* , <d>

LIST OF BYTE VARYING
(<n>) AS BINARY

AS TEXT
DECIMAL
NUMERIC (<n>)

, <n>
REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
CHARACTER (<n>) CHARACTER SET char-set-name
CHAR VARYING
CHARACTER VARYING
VARCHAR (<n>)
VARCHAR2 CHARACTER SET char-set-name
LONG VARCHAR
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
RAW (<n>)
LONG

RAW

6–188 SQL Statements

ALTER TABLE Statement

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

literal =

numeric-literal
string-literal
date-time-literal
interval-literal

col-constraint=

CONSTRAINT <constraint-name>

PRIMARY KEY
UNIQUE
NOT NULL
NULL
CHECK (predicate)
references-clause

constraint-attributes

references-clause =

REFERENCES <referenced-table-name>

(<referenced-column-name>)
,

SQL Statements 6–189

ALTER TABLE Statement

constraint-attributes =

DEFERRABLE
INITIALLY IMMEDIATE

DEFERRED
NOT DEFERRABLE

INITIALLY IMMEDIATE
INITIALLY IMMEDIATE

DEFERRABLE
NOT DEFERRABLE

INITIALLY DEFERRED
DEFERRABLE

position-clause =

AFTER COLUMN <column-name>
BEFORE

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS literal
DATATRIEVE

table-constraint =

CONSTRAINT <constraint-name>

table-constraint-clause

constraint-attributes

6–190 SQL Statements

ALTER TABLE Statement

table-constraint-clause =

PRIMARY KEY (<column-name>)
,

UNIQUE (<column-name>)
,

CHECK (predicate)
FOREIGN KEY (<column-name>)

,

references-clause

alter-col-definition =

<column-name>
alt-col-type SET DEFAULT value-expr

DEFAULT value-expr
DROP DEFAULT value-expr

col-constraint position-clause

sql-and-dtr-clause
NO QUERY HEADER
NO EDIT STRING
NO QUERY NAME FOR DTR
NO DEFAULT VALUE DATATRIEVE

alt-col-type =

data-type
<domain-name> column-identity
COMPUTED BY value-expr
AUTOMATIC AS value-expr

INSERT
UPDATE

SQL Statements 6–191

ALTER TABLE Statement

enable-clause =

ENABLE

ALL TRIGGERS
TRIGGER <trigger-name>

ALL CONSTRAINTS
VALIDATE CONSTRAINT <constraint-name>
NOVALIDATE PRIMARY KEY

UNIQUE (<column-name>)
,

disable-clause =

DISABLE ALL TRIGGERS
TRIGGER <trigger-name>
ALL CONSTRAINTS
CONSTRAINT <constraint-name>
PRIMARY KEY
UNIQUE (<column-name>)

,

Arguments

ADD (...)
This alternate syntax is added for compatibility with Oracle Database.

ADD COLUMN col-definition
Creates an additional column in the table. SQL adds the column after all
existing columns in the table unless the position-clause relocates the new
column. The column definition specifies a data type or domain name, optional
default value, optional column constraints, and optional formatting clauses.

The COLUMN keyword is optional.

ADD CONSTRAINT table-constraint
Adds a table constraint definition. The four types of table constraints are
PRIMARY KEY, UNIQUE, CHECK, and FOREIGN KEY.

AFTER COLUMN column-name
BEFORE COLUMN column-name
Changes the normal field ordering of columns to make the displayed column
ordering more readable. Note that this does not change the on-disk layout of
the columns. By default, when neither of these clauses is specified, columns are
positioned at the end of the table specified with the ALTER TABLE statement.

6–192 SQL Statements

ALTER TABLE Statement

ALTER COLUMN alter-col-definition
Modifies the column specified by the column name. The COLUMN keyword is
optional.

You can modify some elements of a column definition but not others.

You cannot change an existing column constraint. However, you can delete
the existing constraint and add a new column constraint using the alter-col-
definition clause to achieve the same result.

AUTOMATIC AS value-expr
AUTOMATIC INSERT AS value-expr
AUTOMATIC UPDATE AS value-expr
These AUTOMATIC column clauses allow you to store special information
when data is inserted into a row or a row is updated. For example, you can
log application-specific information to audit activity or provide essential values,
such as time stamps or unique identifiers for the data.

The assignment of values to these types of columns is managed by Oracle Rdb.
The AUTOMATIC INSERT clause can be used to provide a complex default
for the column when the row is inserted; it cannot be changed by an UPDATE
statement. The AUTOMATIC UPDATE clause can be used to provide an
updated value during an UPDATE statement. The AUTOMATIC clause is the
default and specifies that the value expression should be applied during both
INSERT and UPDATE statements. The column type is derived from the AS
value-expr; using CAST allows a specific data type to be specified. However,
this is not required and is rarely necessary.

You can define an AUTOMATIC INSERT column to automatically receive data
during an insert operation. The data is stored like any other column, but the
column is read-only. Because AUTOMATIC columns are treated as read-only
columns, they cannot appear in the column list for an insert operation nor be
modified by an update operation. AUTOMATIC UPDATE columns can have an
associated default value that will be used when the row is inserted.

Suppose that you want to store the current time stamp of a transaction and
supply a unique numeric value for an order number. In addition, when the row
is updated (the order is altered), you want a new time stamp to be written to
the LAST_UPDATED column. You could write an application to supply this
information, but you could not guarantee the desired behavior. For instance,
a user with access to the table might update the table with interactive SQL
and forget to enter a new time stamp to the LAST_UPDATED column. If
you use an AUTOMATIC column instead, it can be defined so that columns
automatically receive data during an insert operation. The data is stored like
any other column, but the column is read-only.

SQL Statements 6–193

ALTER TABLE Statement

See the Usage Notes for more information on automatic columns.

char-data-types
A valid SQL character data type. See Section 2.3.1 for more information on
character data types.

CHECK (predicate)
Specifies a predicate that column values inserted into the table must satisfy.
See Section 2.7 for details on specifying predicates.

Predicates in CHECK column constraints can only refer directly to the column
with which they are associated. See the Usage Notes for the CREATE TABLE
Statement for details.

col-constraint
Specifies a constraint that column values inserted into the table must satisfy.
You can specify more than one column constraint. For example:

SQL> ALTER TABLE EMPLOYEE
cont> ADD ID_NUMBER INT NOT NULL UNIQUE;

You can name each constraint. For example:

SQL> ALTER TABLE EMPLOYEE
cont> ADD ID_NUMBER INT
cont> CONSTRAINT A NOT NULL
cont> CONSTRAINT B UNIQUE;

column-name
The name of the column being added or modified.

COMPUTED BY value-expr
Specifies that the value of this column is calculated from values in other
columns and constant expressions. See the CREATE TABLE Statement for
more information.

constraint-attributes
Although the constraint attribute syntax, shown in Table 6–3, provides 11
permutations as required by the SQL99 standard, they equate to the following
three options:

• INITIALLY IMMEDIATE NOT DEFERRABLE

Specifies that evaluation of the constraint must take place when the
INSERT, DELETE, or UPDATE statement executes. If you are using the
SQL92, SQL99, MIA, ORACLE LEVEL1 or ORACLE LEVEL2 dialect, this
is the default.

6–194 SQL Statements

ALTER TABLE Statement

This clause is the same as the NOT DEFERRABLE option provided in
previous releases of Oracle Rdb.

• INITIALLY DEFERRED DEFERRABLE

Specifies that evaluation of the constraint can take place at any later time.
Unless otherwise specified, evaluation of the constraint takes place as the
COMMIT statement executes. You can use the SET ALL CONSTRAINTS
statement to have all constraints evaluated earlier. See the SET ALL
CONSTRAINTS Statement for more information. If you are using the
default SQLV40 dialect, this is the default constraint attribute. When
using this default dialect, Oracle Rdb displays a deprecated feature
message for all constraints defined without specification of one of the
constraint attributes.

This clause is the same as the DEFERRABLE option provided in previous
releases of Oracle Rdb.

• INITIALLY IMMEDIATE DEFERRABLE

Specifies that evaluation of the constraint be deferred (using the SET
CONSTRAINT ALL statement or the SET TRANSACTION statement with
the EVALUATING clause) but by default it is evaluated after the INSERT,
DELETE, or UPDATE statement executes.

Table 6–3 Constraint Attributes Syntax Permutations and Equivalents

If You Specify This Clause: It Defaults to This Clause:

Do not specify a clause INITIALLY IMMEDIATE NOT DEFERRABLE
NOT DEFERRABLE
INITIALLY IMMEDIATE
INITIALLY IMMEDIATE NOT
DEFERRABLE
NOT DEFERRABLE
INITIALLY IMMEDIATE

INITIALLY DEFERRED INITIALLY DEFERRED DEFERRABLE
DEFERRABLE INITIALLY
DEFERRED

(continued on next page)

SQL Statements 6–195

ALTER TABLE Statement

Table 6–3 (Cont.) Constraint Attributes Syntax Permutations and Equivalents

If You Specify This Clause: It Defaults to This Clause:

INITIALLY DEFERRED
DEFERRABLE

DEFERRABLE INITIALLY IMMEDIATE DEFERRABLE
INITIALLY IMMEDIATE
DEFERRABLE
DEFERRABLE INITIALLY
IMMEDIATE

CONSTRAINT constraint-name
The CONSTRAINT clause specifies a name for the table constraint. The name
is used for a variety of purposes:

• The INTEG_FAIL error message specifies the name when an INSERT,
UPDATE, or DELETE statement violates the constraint.

• The ALTER CONSTRAINT, DROP CONSTRAINT and ALTER TABLE
DROP CONSTRAINT statements specify the constraint name.

• The SHOW TABLE statements display the names of constraints.

• The EVALUATING clause of the SET and the DECLARE TRANSACTION
statements specifies constraint names.

The CONSTRAINT clause is optional. If you omit the constraint name, SQL
creates a name. However, Oracle Rdb recommends that you always name
column and table constraints. The constraint names generated by SQL may be
obscure. If you supply a constraint name with the CONSTRAINT clause, the
name must be unique in the schema.

data-type
A valid SQL data type. Specifying an explicit data type to associate with a
column is an alternative to specifying a domain name.

See Section 2.3 for more information on data types.

Using the ALTER clause to change the data type of a column (directly or
indirectly by specifying a domain) requires caution:

• If you change a column to a character data type with a larger capacity, or
increase the scale factor for a column, or change the character set, you may

6–196 SQL Statements

ALTER TABLE Statement

have to modify source programs that refer to the column and precompile
them again.

• If you change a column to a smaller capacity numeric data type then
overflow errors may result at run time as Oracle Rdb attemps to convert
the large value to the new data type.

• If you change a column to a data type with a smaller capacity, SQL
truncates values already stored in the database that exceed the capacity of
the new data type, but only when it retrieves those values. (The values are
not truncated in the database, however, until they are updated. If you only
retrieve data, you can change the data type back to the original, and SQL
again retrieves the entire original value.)

• You can change a DATE column only to a character data type (CHAR,
VARCHAR, LONG VARCHAR, NCHAR, NATIONAL CHAR, NCHAR
VARYING, or NATIONAL CHAR VARYING, or date/time (DATE ANSI,
TIMESTAMP, TIME). If you attempt to change a DATE column to anything
else, SQL returns an error message.

date-time-data-types
A valid SQL date-time data type. See Section 2.3.2 for more information on
date-time data types.

DEFAULT value-expr
Provides a default value for a column if the row that is inserted does not
include a value for that column.

You can use any value expression including subqueries, conditional, character,
date/time, and numeric expressions as default values. See Section 2.6 for more
information about value expressions.

For more information about NULL, see Section 2.6.1 and the Usage Notes
following this Arguments list.

You can add a default value to an existing column or alter the existing default
value of a column by altering the table. However, doing so has no effect on the
values stored in existing rows.

The value expressions described in Section 2.6 include DBKEY and aggregate
functions. However, the DEFAULT clause is not a valid location for referencing
a DBKEY or an aggregate function. If you attempt to reference either, you
receive a compile-time error.

If you do not specify a default value, a column inherits the default value from
the domain. If you do not specify a default value for either the column or
domain, SQL assigns NULL as the default value.

SQL Statements 6–197

ALTER TABLE Statement

If you specify a default value for either the column or domain when a column
is added, SQL propagates the default value from the column or domain to
all previously stored rows. Therefore, when you add a column to a table and
specify a default value for the column, SQL stores the default value in the
newly added column of all the previously stored rows. Likewise, if the newly
added column is based upon a domain that specifies a default value, SQL
stores the default value in the column of all previously stored rows.

The following example shows that SQL stores the default value in the column
when you add a column that specifies a default value.

SQL> -- Add the column PHONE and specify a default value.
SQL> --
SQL> ALTER TABLE EMPLOYEES
cont> ADD PHONE CHAR(7) DEFAULT ’None’;
SQL> --
SQL> -- The result table shows that the rows contain the default value
SQL> -- of the PHONE column.
SQL> --
SQL> SELECT LAST_NAME, PHONE FROM EMPLOYEES;
LAST_NAME PHONE
Toliver None
Smith None
Dietrich None
Kilpatrick None
.
.
.

SQL>

Because SQL updates data when you add a column with a default value other
than NULL, the ALTER TABLE statement can take some time to complete
when the table contains many rows. (If you specify a default value of NULL,
SQL does not modify the data because SQL automatically returns a null value
for columns that have no actual value stored in them.) If you want to add more
than one column with default values, add them in a single ALTER TABLE
statement. When you do so, SQL scans the table data once instead of many
times.

Because data is added to the rows, adding a column with a default value may
result in fragmented records. For information about locating and correcting
record fragmentation, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

domain-name
The name of a domain created in a CREATE DOMAIN statement. SQL gives
the column the data type specified in the domain. For more information on
domains, see the CREATE DOMAIN Statement.

6–198 SQL Statements

ALTER TABLE Statement

For most purposes, specify a domain instead of an explicit data type.

• Domains ensure that columns in multiple tables that serve the same
purpose all have the same data type. For example, several tables in the
sample personnel database refer to the domain ID_DOM.

• A domain lets you change the data type for all the columns that refer to it
in one operation by changing the domain itself with an ALTER DOMAIN
statement. For example, if you want to change the data type for the
column EMPLOYEE_ID from CHAR(5) to CHAR(6), you need only alter
the data type for ID_DOM. You do not have to alter the data type for the
column EMPLOYEE_ID in the tables DEGREES, EMPLOYEES, JOB_
HISTORY, and SALARY_HISTORY, nor do you have to alter the column
MANAGER_ID in the DEPARTMENTS table.

However, you might not want to use domains when you create tables if:

• Your application must be compatible with the Oracle Database language.

• You are creating tables that do not need the advantages of domains.

DROP COLUMN column-name
Deletes the specified column. The COLUMN keyword is optional.

DROP CONSTRAINT constraint-name
Deletes the specified column constraint or table constraint from the table
definition.

DROP DEFAULT
Deletes (drops) the default value of a column in a table.

enable-clause
disable-clause
Allows you to enable or disable all triggers, specified triggers, all constraints,
specified constraints, a primary key, or a unique constraint, as described in the
following list. By default, table and column constraints added during an alter
table operation are enabled.

• DISABLE ALL TRIGGERS

All triggers defined for the table are disabled. (No error is raised if no
triggers are defined for this table.)

• ENABLE ALL TRIGGERS

All triggers defined for the table are enabled. (No error is raised if no
triggers are defined for this table.)

• DISABLE TRIGGER trigger-name

SQL Statements 6–199

ALTER TABLE Statement

The named trigger for this table is disabled. The named trigger must be
defined on the table.

• ENABLE TRIGGER trigger-name

The named trigger for this table is enabled. The named trigger must be
defined on the table.

• DISABLE ALL CONSTRAINTS

All table and column constraints for this table are disabled. (No error is
raised if no constraints are defined on the table.)

• ENABLE ALL CONSTRAINTS

All table and column constraints for this table are enabled. (No error is
raised if no constraints are defined on the table.)

• DISABLE CONSTRAINT constraint-name

The named constraint is disabled. The named constraint must be a table
or column constraint for the table.

• ENABLE CONSTRAINT constraint-name

The named constraint is enabled. The named constraint must be a table or
column constraint for the table.

• DISABLE PRIMARY KEY

The primary key for the table is disabled.

• ENABLE PRIMARY KEY

The primary key for the table is enabled.

• DISABLE UNIQUE (column-name)

The matching UNIQUE constraint is disabled. The columns listed must be
columns in a unique constraint for the table.

• ENABLE UNIQUE (column-name)

The matching UNIQUE constraint is enabled. The columns listed must be
columns in a unique constraint for the table.

• VALIDATE and NOVALIDATE

When a constraint is added or enabled with the ALTER TABLE statement,
the default is to validate the table contents. The ENABLE NOVALIDATE
option allows a knowledgeable database administrator to avoid the time
and I/O resources required to revalidate the data when they know the data
is valid.

6–200 SQL Statements

ALTER TABLE Statement

Note

Oracle Corporation recommends that you use the RMU Verify
command with the Constraint qualifier periodically to verify that
your assumptions are correct if you use the ENABLE NOVALIDATE
option.

FOREIGN KEY column-name
The name of a column or columns that you want to declare as a foreign key in
the table you are altering (the referencing table).

IDENTITY
Specifies that the column is to be a special read-only identity column. INSERT
will evaluate this column and store a unique value for each row inserted. Only
one column of a table may have the IDENTITY attribute. Oracle Rdb creates a
sequence with the same name as the current table.

See the ALTER SEQUENCE Statement and the CREATE SEQUENCE
Statement for more information.

increment-by
An integer literal value that specifies the increment for the sequence created
for the IDENTITY column. A negative value creates a descending sequence,
and a positive value creates an ascending sequence. A value of zero is not
permitted. If omitted the default is 1, that is, an ascending sequence.

MODIFY (...)
This alternate syntax is added for compatibility with Oracle Database.

NOT NULL
Restricts values in the column to values that are not null.

NULL
Specifies that NULL is permitted for the column. This is the default behavior.
A column with a NULL constraint cannot also have a NOT NULL constraint
within the same ALTER TABLE statement. However, no checks are performed
for CHECK constraints, which may limit the column to non-null values.

The NULL constraint is not stored in the database and is provided only as a
syntactic alternative to NOT NULL.

When used on ALTER TABLE . . . ALTER COLUMN this clause drops any
NOT NULL constraints defined for the column.

SQL Statements 6–201

ALTER TABLE Statement

PRIMARY KEY
A primary key constraint defines one or more columns whose values make
a row in a table different from all others. SQL requires that values in a
primary key column be unique and not null; therefore, you need not specify the
UNIQUE and NOT NULL column constraints for primary key columns.

You cannot specify the primary key constraint for a computed column.

When used as a table constraint this clause must be followed by a list of
column names. When used as a column constraint this clause applies to the
named column of the table.

referenced-column-name
For a column constraint, the name of the column that is a unique key or a
primary key in the referenced table. For a table constraint, the referenced
column name is the name of the column or columns that are a unique key or
primary key in the referenced table. If you omit the referenced-column-name
clause, the primary key is selected by default.

references-clause
Specifies the name of the column or columns that are a unique key or primary
key or in the referenced table. When the REFERENCES clause is used as
a table constraint, the column names specified in the FOREIGN KEY clause
become a foreign key for the referencing table.

When used as the column type clause, specifies that the type of the column
be inherited from the PRIMARY KEY or UNIQUE index referenced. Both the
data type and domain are inherited.

RENAME TO
Changes the name of the table being altered. See the RENAME Statement for
further discussion. If the new name is the name of a synonym then an error
will be raised.

The new name must not exist as the name of an existing table, synonym,
sequence or view. You may not rename a system table.

The RENAME TO clause requires synonyms be enabled for this database.
Refer to the ALTER DATABASE Statement SYNONYMS ARE ENABLED
clause. Note that these synonyms may be deleted if they are no longer used by
database definitions or applications.

SET DEFAULT default-value
Specifies a default value for the column.

6–202 SQL Statements

ALTER TABLE Statement

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. See Section 2.5 for more
information.

If you specify a formatting clause for a column that is based on a domain that
also specifies a formatting clause, the formatting clause in the table definition
overrides the one in the domain definition.

start-with
An integer literal value that specifies the starting value for the sequence
created for the IDENTITY column. If omitted the default is 1.

table-name
The name of the table whose definition you want to change.

UNIQUE
Specifies that values in the associated column must be unique.

Usage Notes

• You can revise a COMPUTED BY or AUTOMATIC column expression by
the ALTER TABLE...ALTER COLUMN statement. A new row version is
created for the table to accommodate changes in data type and length of the
data. If the column is an AUTOMATIC AS definition, then the previously
stored data will be converted to the new data type upon retrieval.

Only the value expression can be altered; the type of computation cannot
be changed. That is, a COMPUTED BY column cannot be changed to an
AUTOMATIC AS column and an AUTOMATIC INSERT AS column cannot
be changed to an AUTOMATIC UPDATE AS column.

• Attempts to alter a table fail if that table is involved in a query at the
same time. Users must detach from the database with a DISCONNECT
statement before you can alter the table. When Oracle Rdb first accesses
an object, such as the table, a lock is placed on that object and not released
until the user exits the database. If you attempt to update this object, you
will get a lock conflict on client message due to the other user’s access to
the object.

Similarly, while you alter a table, users cannot execute queries involving
that table until you complete the transaction with a COMMIT or
ROLLBACK statement for the ALTER TABLE statement. The user
receives a lock conflict on client error message. While DDL operations
are performed, normal data locking mechanisms are used against system
tables. (System tables contain information about objects in the database.)

SQL Statements 6–203

ALTER TABLE Statement

Therefore, attempts to update an object lock out attempts to query that
object. These locks are held until the DDL operation is committed or rolled
back.

• You can only use the ALTER TABLE statement to alter table definitions.
Use the ALTER VIEW statement to modify view definitions.

• Because Oracle Rdb creates dependencies between stored procedures and
metadata (like tables) on which they are compiled and stored, adding a
column with a language semantic dependency causes the stored procedure
in which the column resides to be invalidated. See the CREATE MODULE
Statement for a list of ALTER TABLE statements that can or cannot cause
stored procedure invalidation.

See the Oracle Rdb Guide to SQL Programming for detailed information
about stored procedure dependency types and how metadata changes can
cause invalidation of stored procedures.

• If a column is part of an index, you cannot alter its data type unless
the result type has the same type, length, precision, scale, character set,
collating sequence, and so on. For example, the column EMPLOYEE_ID is
defined in the table EMPLOYEE as ID_DOM. The following example shows
that it can be altered when the same type is used.

SQL> show table (column) EMPLOYEES
Information for table EMPLOYEES

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_NUMBER
Missing Value:
.
.
.

SQL> alter table employees alter column employee_id char(6);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-FLDINUSE, field EMPLOYEE_ID is referenced in index EMP_EMPLOYEE_ID
-RDMS-F-RELFLDNOC, field EMPLOYEE_ID in relation EMPLOYEES has not been changed

SQL> alter table employees alter column employee_id char(5);
SQL> show table (column) EMPLOYEES
Information for table EMPLOYEES

6–204 SQL Statements

ALTER TABLE Statement

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5)

.

.

.
SQL>

• You cannot delete a column in a table if:

That column is referred to by some other database object, such as a
view, constraint or trigger.

An index is based on that column.

• You can alter the data type of a column with a referencing NOT NULL
constraint without first deleting the constraint.

• If the data types are the same, the ALTER COLUMN clause can change
an AUTOMATIC column to an updatable base column even if it has
constraints and indices.

• You can alter a non-computed base column to be an AUTOMATIC column.
The old data is retained and the column is made read-only.

• You can alter a non-computed base column to be a COMPUTED BY column.
The old data will not be accessible (a warning is issued for interactive
SQL), and references to that column will evaluate the COMPUTED BY
expression. The ALTER TABLE statement will fail if indices reference this
column.

Altering the column back to a base or automatic column will allow older
versions of the row data to be visible; any rows inserted while the column
was a COMPUTED BY column will return a null value.

• You can use the IDENTITY syntax with the ALTER COLUMN clause.

If the table has no existing IDENTITY column, a new sequence for the
table will be created. You must ensure that use of IDENTITY will not
generate existing values for the column because this would cause the insert
operation to fail. Use the parameters in the IDENTITY syntax to specify
an appropriate START WITH VALUE, or modify the sequence using the
ALTER SEQUENCE command.

If the table has an existing IDENTITY column, an error is displayed.

• If an IDENTITY column is converted to a base column, a COMPUTED BY
column, or an AUTOMATIC column, the special sequence is automatically
dropped.

SQL Statements 6–205

ALTER TABLE Statement

• If a column has a DEFAULT (base column or AUTOMATIC UPDATE AS
column) and it is converted to a COMPUTED BY, AUTOMATIC AS, or an
AUTOMATIC INSERT AS column, the default value is removed because
these types of columns are incompatible with DEFAULT.

• You can use the ALTER TABLE statement to add or modify the default
value for a column.

You can use a default value such as NULL or ‘‘Not Applicable’’ that clearly
demonstrates that no data was inserted into a column. If a column would
usually contain a particular value, you can use that value as the default.
For example, if most company employees work full-time, you could make
full-time the default value for a work status column.

If you specify a default value for a column that you base on a domain and
you specified a default value for that domain, the default value for the
column overrides the default value for the domain.

To remove a default value, use the DROP DEFAULT clause, as follows:

SQL> ALTER TABLE EMPLOYEES
cont> ALTER BIRTHDAY
cont> DROP DEFAULT;

If you change or add a default value for a domain, the change has no effect
on any existing data in the database; that is, the rows already stored in the
database with columns that contain the old default value are not changed.

• You can use the ALTER TABLE statement to add or delete column and
table constraints.

See the Usage Notes section in the CREATE TABLE Statement for details
on the differences between column constraints and table constraints.

• The ALTER TABLE statement fails if you add a constraint and the
condition is not true.

• You must delete and create the view definition again for views to display
new columns. Existing view definitions do not display columns added with
the ALTER TABLE statement. Views display only the columns that existed
when the views were created.

• Changes you make to tables created with the FROM clause (based on
a repository definition) or to tables based on domains created with the
FROM clause can affect other schemas and applications. If the schema was
declared with the PATHNAME clause, changes made with the ALTER
TABLE . . . ADD or the ALTER TABLE . . . ALTER statement are
immediately written to the repository record or field definitions. If the
schema was declared with the FILENAME clause, the changes are written

6–206 SQL Statements

ALTER TABLE Statement

to the repository when the next INTEGRATE SCHEMA . . . ALTER
DICTIONARY statement is issued.

The changes affect applications and other schemas that use the same
repository definition when the application recompiles or the database
integrates with the repository.

For this reason, use caution when altering tables that are based on
repository definitions. Make sure that changes you make through ALTER
TABLE statements will not have unintended effects on other users or
applications that share the repository definitions.

• The ALTER TABLE statement allows you to change the character set
associated with a column name. However, if this is done after data is
entered into a table, SQL may return a data conversion error when you try
to select rows from that table.

• You can specify the national character data type by using the NCHAR,
NATIONAL CHAR, NCHAR VARYING, or NATIONAL CHAR VARYING
data types. The national character data type is defined by the database
national character set when the database is created. See Section 2.3 for
more information regarding national character data types.

• You can specify the length of the data type in characters or octets. By
default, data types are specified in octets. By preceding the ALTER TABLE
statement with the SET CHARACTER LENGTH ’CHARACTERS’ or SET
DIALECT ’MIA’ statement, you change the length to characters. See the
SET CHARACTER LENGTH Statement for more information regarding
the SET CHARACTER LENGTH and SET DIALECT statements.

• A computed by column is set to NULL if it references a table that has been
deleted by a DROP TABLE table-name CASCADE statement. For example:

SQL Statements 6–207

ALTER TABLE Statement

SQL> CREATE TABLE t1 (col1 INTEGER,
cont> col2 INTEGER);
SQL> --
SQL> CREATE TABLE t2 (x INTEGER,
cont> y COMPUTED BY (SELECT COUNT(*) FROM
cont> t1 WHERE t1.col1 = t2.x));
SQL> --
SQL> -- Assume values have been inserted into the tables.
SQL> --
SQL> SELECT * FROM t1;

COL1 COL2
1 100
1 101
1 102
2 200
3 300

5 rows selected
SQL> SELECT * FROM t2;

X Y
1 3
3 1

2 rows selected
SQL> --
SQL> DROP TABLE t1 CASCADE;
SQL> SELECT * FROM t2;

X Y
1 NULL
3 NULL

You can either alter the computed by column to have a new data type or
value, or delete that column from the table.

• The following usage notes apply to constraints:

In addition to the ALTER privilege that is required to issue the ALTER
TABLE statement, you must have the DROP privilege on the table
to disable a constraint or trigger, and you must have the CREATE
privilege on the table to enable a constraint or a trigger. You must hold
the DBADM privilege on the database to specify the NOVALIDATE
option to the enable-clause.

When a constraint is disabled, it is not evaluated by the INSERT,
UPDATE, or DELETE statements.

When a previously disabled constraint is reenabled, the constraint is
validated to ensure that all existing rows are valid.

If you enable constraints during an alter table operation, and do
not specify NOVALIDATE, each constraint will be validated. If the
referential integrity constraint fails, then the alter table operation also
fails and the failed constraint name will be reported.

6–208 SQL Statements

ALTER TABLE Statement

The RMU Verify command with the Constraint qualifier ignores any
disabled constraint unless that constraint is named with the Constraint
qualifier and the Constraint option. If the Constraint qualifier specifies
all constraints (no options are specified), or if it specifies a specific
table, all disabled constraints are ignored. This allows you to check
a disabled constraint periodically without the need to reenable it,
which might be useful if the overhead of checking the constraint during
operating hours is too expensive, or if it is already being enforced by
the application.

• The following usage notes apply to AUTOMATIC columns:

When the column is omitted from an insert operation, a column default
and an automatic column provide similar functions. However, there are
distinctions, as follows:

* AUTOMATIC columns cannot be referenced during an insert
operation because they are read-only to applications.

* AUTOMATIC columns can be active during an update operation.

* When you use an AUTOMATIC column, you do not provide the
data type for the column.

Note the following differences between using COMPUTED BY columns
and AUTOMATIC columns:

* COMPUTED BY columns use no space in the row, AUTOMATIC
columns do.

* A COMPUTED BY column is evaluated when the row is fetched,
such as when a SELECT, UPDATE, or DELETE statement
references the column name. An AUTOMATIC column is evaluated
during an INSERT or UPDATE statement. A calculated value
is written to a column in the row and the value returned by a
SELECT statement is the stored column value.

For example, a column defined as COMPUTED BY CURRENT_
DATE returns the date when the query is executed. A selected
column that is AUTOMATIC INSERT AS CURRENT_DATE
returns the date when the INSERT was performed, which might be
different from the date when the query is executed.

Note the following differences between using an AUTOMATIC column
and a trigger on the table:

* In an insert operation, an AFTER INSERT trigger can provide this
functionality. However, AUTOMATIC columns can help eliminate
the overhead of a trigger and so simplify table management.

SQL Statements 6–209

ALTER TABLE Statement

* Trigger actions cannot modify a row being updated, because this
leads to a recursive trigger action. AUTOMATIC UPDATE columns
are evaluated prior to the trigger and constraint execution.

You can create an index and constraints on an AUTOMATIC column.
AUTOMATIC columns are identical to other columns, except that
Oracle Rdb, not a user application, assigns the value.

If the data written to the table with an AUTOMATIC column is
incorrect, you can temporarily suspend the read-only attribute of the
column by issuing the SET FLAGS ’AUTO_OVERRIDE’ statement
if you have the DBADMIN privilege on the database. Then you can
execute an update query to correct the incorrect data. See the SET
FLAGS Statement for more information and an example.

The SET FLAGS option AUTO_OVERRIDE can be used to allow
updates to selected AUTOMATIC columns during INSERT so that
rows could be reloaded, or during UPDATE to adjust incorrectly stored
values.

* For the INSERT statement ’AUTO_OVERRIDE’ allows
assignment to any AUTOMATIC column, and any insert
AUTOMATIC column omitted from the column list will be
evaluated normally.

* For the UPDATE statement ’AUTO_OVERRIDE’ allows
direct assignment of values to any AUTOMATIC column. No
AUTOMATIC columns are evaluated.

If the DEFAULT clause is used in an INSERT or UPDATE statement
then one of the following will be applied:

* When a new column is added that includes the DEFAULT attribute
then all previously inserted rows are updated to include the
DEFAULT as the value of the new column.

If the new column is based on a domain which includes the
DEFAULT attribute then, in the same fashion, the table is updated.

If the new column is an AUTOMATIC INSERT AS or an
AUTOMATIC AS (implying both insert and update actions) then
all previously inserted rows are updated with the AUTOMATIC
expression as the value of the new column.

• SQL automatically propagates to all referencing view definitions any
domain or data type attributes provided by an ALTER COLUMN clause.

6–210 SQL Statements

ALTER TABLE Statement

For example, if you modify a column to refer to a domain for its data type,
any view column which refers to that column directly is updated to reflect
the new attributes of the modified column.

SQL> CREATE DOMAIN d CHAR(1);
SQL> CREATE TABLE T (A d);
SQL> CREATE VIEW V (B,C) AS SELECT A, A||’X’ FROM T;
SQL> SHOW VIEW (COL) V;
Information for table V

Columns for view V:
Column Name Data Type Domain
----------- --------- ------
B CHAR(1)
C CHAR(2)
SQL> ALTER DOMAIN d CHAR(5);
SQL> SHOW VIEW (COL) v;
Information for table V

Columns for view V:
Column Name Data Type Domain
----------- --------- ------
B CHAR(5)
C CHAR(6)

• Any table referenced by a COMPUTED BY, AUTOMATIC or DEFAULT
clause will be implicitly reserved for SHARED READ by Oracle Rdb when
the column is referenced in a query. Therefore, it is not necessary to
explicitly reserve these tables in the DECLARE TRANSACTION or SET
TRANSACTION statement unless the required lock mode is higher than
SHARED READ.

If any of these expressions call an SQL function which reads from a table
or view, then these tables are not implicitly reserved. You must include
a LOCK TABLE statement in the function (or any called procedure) to
ensure that references to the tables are allowed, even when not listed in
the DECLARE TRANSACTION or SET TRANSACTION statement.

• When an ALTER TABLE statement drops one or more LIST OF BYTE
VARYING columns, the ALTER TABLE statement must read each row in
the table and record the pointers for the LIST values. This list is processed
at COMMIT time to delete the LIST column data. Therefore, the database
administrator must also allow for this time when altering the table.

Reserving the table for EXCLUSIVE WRITE is recommended because the
dropped LIST columns will require that each row in the table be updated
and set the LIST column to NULL - it is this action which queues the
pointers for commit time processing. This reserving mode will eliminate
snapshot file I/O, lower lock resources and reduce virtual memory usage.

SQL Statements 6–211

ALTER TABLE Statement

As the LIST data is stored outside the table, performance may be improved
by attaching to the database with the RESTRICTED ACCESS clause,
which has the side effect of reserving all the LIST storage areas for
EXCLUSIVE access, and therefore eliminates snapshot I/O during the
delete of the LIST data.

• The sequence created by the IDENTITY attribute can be shown with
SHOW SEQUENCES, and the attributes of the sequence can be altered
using ALTER SEQUENCE, COMMENT ON SEQUENCE, GRANT and
REVOKE.

However, neither DROP SEQUENCE or RENAME SEQUENCE are
permitted for this special sequence. A DROP TABLE, or an ALTER
TABLE . . . DROP COLUMN of the identity column will implicitly drop
the identity sequence. A RENAME of the table will implicitly rename the
matching identity sequence.

• Constraints and indices may be created for the identity column. Indices
can improve query performance, and constraints such as PRIMARY KEY
or UNIQUE will allow references from other tables FOREIGN KEY
constraints.

• The ALTER TABLE statement can reference a table reserved in DATA
DEFINITION mode.

The following clauses are supported:

ADD CONSTRAINT

ALTER COLUMN...CONSTRAINT

ENABLE CONSTRAINT, ENABLE PRIMARY KEY, and ENABLE
UNIQUE (...)

DROP CONSTRAINT

ALTER COLUMN ... NULL

DISABLE CONSTRAINT, DISABLE PRIMARY KEY, and DISABLE
UNIQUE

DISABLE UNIQUE (...)

The ADD and ENABLE CONSTRAINT clauses are best suited to
concurrent execution as they may require I/O to validate the constraint.

• Most ALTER TABLE clauses are supported for tables reserved for
SHARED DATA DEFINITION. The exceptions are those clauses that
change the structure of the table: ADD COLUMN and DROP COLUMN,
and ALTER COLUMN which changes the data type.

6–212 SQL Statements

ALTER TABLE Statement

Examples

Example 1: Adding a column to the EMPLOYEES table

SQL> ALTER TABLE EMPLOYEES ADD SALARY INTEGER(2);

Example 2: Adding a column and altering a column in the COLLEGES table

The following example adds two columns, one with a query name to the
COLLEGES table. ALTER DOMAIN is also used to implicitly alter the
POSTAL_CODE column to accept 9 characters instead of 5.

SQL> SHOW TABLE COLLEGES;
Information for table COLLEGES

Comment on table COLLEGES:
names and addresses of colleges attended by employees

Columns for table COLLEGES:
Column Name Data Type Domain
----------- --------- ------
COLLEGE_CODE CHAR(4) COLLEGE_CODE_DOM
Primary Key constraint COLLEGES_PRIMARY_COLLEGE_CODE
COLLEGE_NAME CHAR(25) COLLEGE_NAME_DOM
CITY CHAR(20) CITY_DOM
STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(5) POSTAL_CODE_DOM

.

.

.
SQL> ALTER TABLE COLLEGES
cont> ADD RANKING INTEGER
cont> ADD NUMBER_ALUMS INTEGER
cont> QUERY_NAME IS ’ALUMS’;
SQL> ALTER DOMAIN POSTAL_CODE_DOM CHAR(9);
SQL> SHOW TABLE COLLEGES;

Information for table COLLEGES

Comment on table COLLEGES:
names and addresses of colleges attended by employees

SQL Statements 6–213

ALTER TABLE Statement

Columns for table COLLEGES:
Column Name Data Type Domain
----------- --------- ------
COLLEGE_CODE CHAR(4) COLLEGE_CODE_DOM
Primary Key constraint COLLEGES_PRIMARY_COLLEGE_CODE
COLLEGE_NAME CHAR(25) COLLEGE_NAME_DOM
CITY CHAR(20) CITY_DOM
STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(9) POSTAL_CODE_DOM
RANKING INTEGER
NUMBER_ALUMS INTEGER
Query Name: ALUMS
.
.
.

6–214 SQL Statements

ALTER TABLE Statement

Example 3: Adding and modifying default values

SQL> /* Add a default value to the column HOURS_OVERTIME
***> */
SQL> create table DAILY_SALES
cont> (hours_overtime int
cont> ,hours_worked int default 0
cont> ,gross_sales int
cont> ,salesperson char(20)
cont>);
SQL>
SQL> /* Change the default value for the column HOURS_OVERTIME
***> */
SQL> alter table DAILY_SALES
cont> alter column HOURS_OVERTIME
cont> set default 0;
SQL>
SQL> /* Insert the days sales figures into the table,
***> accepting the default values for HOURS_WORKED, and
***> HOURS_OVERTIME
***> */
SQL> insert into DAILY_SALES (gross_sales, salesperson)
cont> values (2567, ’Bartlett’);
1 row inserted
SQL>
SQL> table DAILY_SALES;
HOURS_OVERTIME HOURS_WORKED GROSS_SALES SALESPERSON

0 0 2567 Bartlett
1 row selected
SQL>

Example 4: Deleting a constraint from the EMPLOYEES table

To find out the name of a constraint, use the SHOW TABLES statement. The
SHOW TABLES statement shows all constraints that refer to a table, not
just those defined as part of the table’s definition. For that reason it is good
practice to always use a prefix to identify the table associated with a constraint
when you assign constraint names with the CONSTRAINT clause.

The constraint DEGREES_FOREIGN1 in this SHOW display follows that
convention to indicate that the constraint is associated with the DEGREES, not
the EMPLOYEES, table despite the constraint’s presence in the EMPLOYEES
display.

SQL> SHOW TABLE EMPLOYEES
Information for table EMPLOYEES

Comment on table EMPLOYEES:
personal information about each employee

SQL Statements 6–215

ALTER TABLE Statement

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM
Primary Key constraint EMPLOYEES_PRIMARY_EMPLOYEE_ID
LAST_NAME CHAR(14) LAST_NAME_DOM
FIRST_NAME CHAR(10) FIRST_NAME_DOM
MIDDLE_INITIAL CHAR(1) MIDDLE_INITIAL_DOM
ADDRESS_DATA_1 CHAR(25) ADDRESS_DATA_1_DOM
ADDRESS_DATA_2 CHAR(20) ADDRESS_DATA_2_DOM
CITY CHAR(20) CITY_DOM
STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(5) POSTAL_CODE_DOM
SEX CHAR(1) SEX_DOM
BIRTHDAY DATE DATE_DOM
STATUS_CODE CHAR(1) STATUS_CODE_DOM

Table constraints for EMPLOYEES:
EMPLOYEES_PRIMARY_EMPLOYEE_ID
Primary Key constraint
Column constraint for EMPLOYEES.EMPLOYEE_ID
Evaluated on COMMIT
Source:

EMPLOYEES.EMPLOYEE_ID PRIMARY KEY

EMP_SEX_VALUES
Check constraint
Table constraint for EMPLOYEES
Evaluated on COMMIT
Source:

CHECK (
SEX IN (’M’, ’F’, ’?’)
)

EMP_STATUS_CODE_VALUES
Check constraint
Table constraint for EMPLOYEES
Evaluated on COMMIT
Source:

CHECK (
STATUS_CODE IN (’0’, ’1’, ’2’, ’N’)
)

Constraints referencing table EMPLOYEES:
DEGREES_FOREIGN1
Foreign Key constraint
Column constraint for DEGREES.EMPLOYEE_ID
Evaluated on COMMIT
Source:

DEGREES.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

6–216 SQL Statements

ALTER TABLE Statement

JOB_HISTORY_FOREIGN1
Foreign Key constraint
Column constraint for JOB_HISTORY.EMPLOYEE_ID
Evaluated on COMMIT
Source:

JOB_HISTORY.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

RESUMES_FOREIGN1
Foreign Key constraint
Column constraint for RESUMES.EMPLOYEE_ID
Evaluated on COMMIT
Source:

RESUMES.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

SALARY_HISTORY_FOREIGN1
Foreign Key constraint
Column constraint for SALARY_HISTORY.EMPLOYEE_ID
Evaluated on COMMIT
Source:

SALARY_HISTORY.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)
.
.
.

SQL> ALTER TABLE EMPLOYEES DROP CONSTRAINT EMP_SEX_VALUES;

Example 5: Adding a NOT NULL constraint to the EMPLOYEES table

SQL> ALTER TABLE EMPLOYEES
cont> ALTER BIRTHDAY
cont> CONSTRAINT E_BIRTHDAY_NOT_NULL
cont> NOT NULL;

If any rows in the EMPLOYEES table have a null BIRTHDAY column, the
ALTER statement fails and none of the changes described in it will be made.

Example 6: Altering the character set of a table column

Assume the database was created specifying the database default character set
and identifier character set as DEC_KANJI and the national character set as
KANJI. Also assume the ROMAJI column was created in the table COLOURS
specifying the identifier character set.

SQL> SET CHARACTER LENGTH ’CHARACTERS’;
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

SQL Statements 6–217

ALTER TABLE Statement

Columns for table COLOURS:
Column Name Data Type Domain
----------- --------- ------
ENGLISH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
FRENCH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
JAPANESE CHAR(4) KANJI_DOM

KANJI 4 Characters, 8 Octets
ROMAJI CHAR(8) DEC_KANJI_DOM
KATAKANA CHAR(8) KATAKANA_DOM

KATAKANA 8 Characters, 8 Octets
HINDI CHAR(8) HINDI_DOM

DEVANAGARI 8 Characters, 8 Octets
GREEK CHAR(8) GREEK_DOM

ISOLATINGREEK 8 Characters, 8 Octets
ARABIC CHAR(8) ARABIC_DOM

ISOLATINARABIC 8 Characters, 8 Octets
RUSSIAN CHAR(8) RUSSIAN_DOM

ISOLATINCYRILLIC 8 Characters, 8 Octets

SQL> ALTER TABLE COLOURS ALTER ROMAJI NCHAR(8);
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

Columns for table COLOURS:
Column Name Data Type Domain
----------- --------- ------
ENGLISH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
FRENCH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
JAPANESE CHAR(4) KANJI_DOM

KANJI 4 Characters, 8 Octets
ROMAJI CHAR(8)

KANJI 8 Characters, 16 Octets
KATAKANA CHAR(8) KATAKANA_DOM

KATAKANA 8 Characters, 8 Octets
HINDI CHAR(8) HINDI_DOM

DEVANAGARI 8 Characters, 8 Octets
GREEK CHAR(8) GREEK_DOM

ISOLATINGREEK 8 Characters, 8 Octets
ARABIC CHAR(8) ARABIC_DOM

ISOLATINARABIC 8 Characters, 8 Octets
RUSSIAN CHAR(8) RUSSIAN_DOM

ISOLATINCYRILLIC 8 Characters, 8 Octets

SQL>

6–218 SQL Statements

ALTER TABLE Statement

Example 7: Error displayed if table COLOURS contains data

In the following example, the column ROMAJI is defined with the DEC_KANJI
character set. If the column ROMAJI contains data before you alter the
character set of the column, SQL displays the following error when you try to
retrieve data after altering the table.

SQL> SELECT ROMAJI FROM COLOURS;
%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-CSETBADASSIGN, incompatible character sets prohibits the requested
assignment
SQL> --
SQL> -- To recover, use the ROLLBACK statement or return the column to its
SQL> -- original character set.
SQL> --
SQL> ROLLBACK;
SQL> SELECT ROMAJI FROM COLOURS;
ROMAJI
kuro
shiro
ao
aka
ki
midori

6 rows selected
SQL>

SQL Statements 6–219

ALTER TABLE Statement

Example 8: Using the Position Clause

SQL> SHOW TABLE (COL) EMPLOYEES
Information for table EMPLOYEES
Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_NUMBER
Missing Value:
LAST_NAME CHAR(14) LAST_NAME
FIRST_NAME CHAR(10) FIRST_NAME
MIDDLE_INITIAL CHAR(1) MIDDLE_INITIAL
Missing Value:
ADDRESS_DATA_1 CHAR(25) ADDRESS_DATA_1
Missing Value:
ADDRESS_DATA_2 CHAR(25) ADDRESS_DATA_2
Missing Value:
CITY CHAR(20) CITY
Missing Value:
STATE CHAR(2) STATE
Missing Value:
POSTAL_CODE CHAR(5) POSTAL_CODE
Missing Value:
SEX CHAR(1) SEX
Missing Value: ?
BIRTHDAY DATE VMS STANDARD_DATE
Missing Value: 17-NOV-1858 00:00:00.00
STATUS_CODE CHAR(1) STATUS_CODE
Missing Value: N

6–220 SQL Statements

ALTER TABLE Statement

SQL> -- Alter the table to rearrange the order in which columns
SQL> -- are displayed.
SQL> ALTER TABLE EMPLOYEES
cont> ALTER COLUMN SEX BEFORE COLUMN LAST_NAME
cont> ALTER COLUMN BIRTHDAY BEFORE COLUMN LAST_NAME
cont> ALTER COLUMN STATUS_CODE BEFORE COLUMN LAST_NAME;
SQL> COMMIT;
SQL> -- Show the table to demonstrate that the order in which
SQL> -- columns are displayed has changed.
SQL> SHOW TABLE (COL) EMPLOYEES;
Information for table EMPLOYEES
Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_NUMBER
Missing Value:
SEX CHAR(1) SEX
Missing Value: ?
BIRTHDAY DATE VMS STANDARD_DATE
Missing Value: 17-NOV-1858 00:00:00.00
STATUS_CODE CHAR(1) STATUS_CODE
Missing Value: N
LAST_NAME CHAR(14) LAST_NAME
FIRST_NAME CHAR(10) FIRST_NAME
MIDDLE_INITIAL CHAR(1) MIDDLE_INITIAL
Missing Value:
ADDRESS_DATA_1 CHAR(25) ADDRESS_DATA_1
Missing Value:
ADDRESS_DATA_2 CHAR(25) ADDRESS_DATA_2
Missing Value:
CITY CHAR(20) CITY
Missing Value:
STATE CHAR(2) STATE
Missing Value:
POSTAL_CODE CHAR(5) POSTAL_CODE
Missing Value:

SQL Statements 6–221

ALTER TABLE Statement

Example 9: Disabling a Trigger

SQL> SELECT * FROM JOB_HISTORY WHERE EMPLOYEE_ID=’00164’;
EMPLOYEE_ID JOB_CODE JOB_START JOB_END DEPARTMENT_CODE
SUPERVISOR_ID

00164 DMGR 21-Sep-1981 NULL MBMN
00228

00164 SPGM 5-Jul-1980 20-Sep-1981 MCBM
00164

2 rows selected
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID =’00164’;
1 row deleted
SQL> -- Show that the EMPLOYEE_ID_CASCADE_DELETE trigger caused
SQL> -- records in the JOB_HISTORY table to be deleted for the
SQL> -- employee with EMPLOYEE_ID of 00164.
SQL> SELECT * FROM JOB_HISTORY WHERE EMPLOYEE_ID=’00164’;
0 rows selected
SQL> -- Roll back the delete operation and alter the EMPLOYEES table
SQL> -- to disable the EMPLOYEE_ID_CASCADE_DELETE trigger.
SQL> ROLLBACK;
SQL> ALTER TABLE EMPLOYEES
cont> DISABLE TRIGGER EMPLOYEE_ID_CASCADE_DELETE;
SQL> -- Commit the alter operation and disconnect to ensure that
SQL> -- the next connection will have the trigger disabled.
SQL> COMMIT;
SQL> DISCONNECT DEFAULT;
SQL> ATTACH ’FILENAME MF_PERSONNEL.RDB’;
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID =’00164’;
1 row deleted
SQL> -- Show that with the trigger disabled, a deletion of
SQL> -- employee 00164 from the EMPLOYEES table does not
SQL> -- trigger a deletion for that employee from the
SQL> -- JOB_HISTORY table.
SQL> SELECT * FROM JOB_HISTORY WHERE EMPLOYEE_ID=’00164’;
EMPLOYEE_ID JOB_CODE JOB_START JOB_END DEPARTMENT_CODE

SUPERVISOR_ID
00164 DMGR 21-Sep-1981 NULL MBMN
00228

00164 SPGM 5-Jul-1980 20-Sep-1981 MCBM
00164

2 rows selected

6–222 SQL Statements

ALTER TABLE Statement

Example 10: NOT NULL constraint is dropped

The following example shows that the NOT NULL constraint is dropped by
ALTER TABLE.

SQL> create table MY_TABLE (a integer not null);
SQL>
SQL> show table (constraint) MY_TABLE
Information for table MY_TABLE

Table constraints for MY_TABLE:
MY_TABLE_A_NOT_NULL
Not Null constraint
Column constraint for MY_TABLE.A
Evaluated on UPDATE, NOT DEFERRABLE
Source:

MY_TABLE.A NOT null

Constraints referencing table MY_TABLE:
No constraints found

SQL>
SQL> alter table MY_TABLE
cont> alter column A NULL;
SQL>
SQL> show table (constraint) MY_TABLE
Information for table MY_TABLE

Table constraints for MY_TABLE:
No constraints found

Constraints referencing table MY_TABLE:
No constraints found

SQL>

Example 11: Adding an identity column to an existing table

SQL> alter table EMPLOYEES
cont> add column SEQUENCE_ID integer identity (1000, 10)
cont> comment is ’Add unique sequence number for every employee’;
SQL>
SQL> show table (column) EMPLOYEES
Information for table EMPLOYEES

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_NUMBER
.
.
.
SEQUENCE_ID INTEGER
Computed: IDENTITY
Comment: Add unique sequence number for every employee

SQL Statements 6–223

ALTER TABLE Statement

SQL> select EMPLOYEE_ID, SEQUENCE_ID from employees;
EMPLOYEE_ID SEQUENCE_ID
00164 1000
00165 1010
.
.
.
00418 1970
00435 1980
00471 1990
100 rows selected
SQL>
SQL> show sequence EMPLOYEES

EMPLOYEES
Sequence Id: 2
Initial Value: 1000
Minimum Value: 1000
Maximum Value: (none)
Next Sequence Value: 2000
Increment by: 10
Cache Size: 20
No Order
No Cycle
No Randomize
Wait
Comment: column IDENTITY sequence
SQL>

Example 12: Revising a COMPUTED BY column

SQL> create table ttt (a integer, c computed by CURRENT_USER);
SQL> insert into ttt (a) values (10);
1 row inserted
SQL> select * from ttt;

A C
10 SMITH

1 row selected
SQL>
SQL> show table (column) ttt
Information for table TTT

Columns for table TTT:
Column Name Data Type Domain
----------- --------- ------
A INTEGER
C CHAR(31)

UNSPECIFIED 31 Characters, 31 Octets
Computed: by CURRENT_USER

6–224 SQL Statements

ALTER TABLE Statement

SQL>
SQL> alter table ttt
cont> alter c
cont> computed by upper (substring (current_user from 1 for 1))
cont> || lower (substring (current_user from 2));
SQL>
SQL> show table (column) ttt
Information for table TTT

Columns for table TTT:
Column Name Data Type Domain
----------- --------- ------
A INTEGER
C VARCHAR(31)

UNSPECIFIED 31 Characters, 31 Octets
Computed: by upper (substring (current_user from 1 for 1))

|| lower (substring (current_user from 2))

SQL>
SQL> select * from ttt;

A C
10 Smith

1 row selected
SQL>

SQL Statements 6–225

ALTER TRIGGER Statement

ALTER TRIGGER Statement

Enables, disables, or renames an existing trigger. Changes take place after the
transaction containing the ALTER TRIGGER statement is committed.

Environment

You can use the ALTER TRIGGER statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format
ALTER TRIGGER <trigger-name> DISABLE

ENABLE
COMMENT IS ’string’

/
RENAME TO <new-trigger-name>

Arguments

COMMENT IS ’string’
Adds a comment about the trigger. SQL displays the text of the comment
when it executes a SHOW statement. Enclose the comment in single quotation
marks (’) and separate multiple lines in a comment with a slash mark (/).

DISABLE
Disables a previously enabled trigger.

ENABLE
Enables a previously disabled trigger.

RENAME TO
Changes the name of the trigger being altered. See the RENAME Statement
for further discussion. If the new name is the name of a synonym then an
error will be raised.

6–226 SQL Statements

ALTER TRIGGER Statement

The RENAME TO clause requires synonyms be enabled for this database.
Refer to the ALTER DATABASE Statement SYNONYMS ARE ENABLED
clause. Note that these synonyms may be deleted if they are no longer used by
database definitions or applications.

trigger-name
The name of an existing trigger.

Usage Notes

• The user must have ALTER privilege on the triggering table.

• The user must also have DROP privilege on the table to use an ALTER
TRIGGER DISABLE statement (if the trigger is currently enabled), and
the user must also have the CREATE privilege on the table to use an
ALTER TRIGGER ENABLE statement (if the trigger is currently disabled).

• By default, a trigger is enabled when it is created.

• When a trigger is disabled, it is not executed by the INSERT, UPDATE, or
DELETE statement.

• When a previously disabled trigger is reenabled, it takes effect for new
queries only. Existing cursors that have been opened do not see the
enabled triggers. Therefore, it is recommended that when you enable or
disable a trigger, you commit, disconnect, and reattach so that consistent
behavior is seen by all queries.

• Use the SHOW TRIGGERS statement to display the setting (disabled or
enabled) for a trigger.

• The COMMENT IS clause is equivalent to the COMMENT ON TRIGGER
statement.

Examples

Example 1: Disabling a Trigger

The following example shows that while the EMPLOYEE_ID_CASCADE_
DELETE trigger is enabled, deleting a record from EMPLOYEES causes the
corresponding record in JOB_HISTORY to be deleted. After the trigger is
disabled, a deletion from EMPLOYEES does not trigger a deletion from the
JOB_HISTORY table.

SQL Statements 6–227

ALTER TRIGGER Statement

SQL> SELECT * FROM JOB_HISTORY WHERE EMPLOYEE_ID=’00164’;
EMPLOYEE_ID JOB_CODE JOB_START JOB_END DEPARTMENT_CODE
SUPERVISOR_ID

00164 DMGR 21-Sep-1981 NULL MBMN
00228

00164 SPGM 5-Jul-1980 20-Sep-1981 MCBM
00164

2 rows selected
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID =’00164’;
1 row deleted
SQL> SELECT * FROM JOB_HISTORY WHERE EMPLOYEE_ID=’00164’;
0 rows selected
SQL> ROLLBACK;
SQL> ALTER TRIGGER EMPLOYEE_ID_CASCADE_DELETE DISABLE;
SQL> COMMIT;
SQL> DISCONNECT DEFAULT;
.
.
.
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID =’00164’;
1 row deleted
SQL> SELECT * FROM JOB_HISTORY WHERE EMPLOYEE_ID=’00164’;
EMPLOYEE_ID JOB_CODE JOB_START JOB_END DEPARTMENT_CODE

SUPERVISOR_ID
00164 DMGR 21-Sep-1981 NULL MBMN
00228

00164 SPGM 5-Jul-1980 20-Sep-1981 MCBM
00164

2 rows selected

6–228 SQL Statements

ALTER USER Statement

ALTER USER Statement

Modifies an entry for the specified user name. The modifications take effect on
the next database connection after the ALTER USER statement is committed.

Environment

You can use the ALTER USER statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER USER <username>
PUBLIC alter-user-opts

alter-user-opts =

ACCOUNT LOCK
UNLOCK

IDENTIFIED EXTERNALLY
RENAME TO <new-username>
COMMENT IS ’<string>’

/
NO PROFILE
PROFILE <profile_name>

Arguments

ACCOUNT LOCK
ACCOUNT UNLOCK
The ACCOUNT LOCK clause disables access to the database by the user for
whom the ALTER USER statement is being applied. The ACCOUNT UNLOCK
clause allows the user access to the database.

SQL Statements 6–229

ALTER USER Statement

COMMENT IS ’string’
Adds a comment about the user. SQL displays the text of the comment when it
executes a SHOW USERS statement. Enclose the comment in single quotation
marks (’) and separate multiple lines in a comment with a slash mark (/).

IDENTIFIED EXTERNALLY
Indicates that the user will be authenticated through the operating system.

NO PROFILE
Removes any assigned profile from the identified user. No error is returned if a
profile is not currently assigned.

PROFILE
Identifies a new profile for assignment to the user and replaces any previously
assigned profile. The specified profile name must be the name of an existing
profile.

PUBLIC
The PUBLIC user in the database. This entry gives you control over
anonymous users who access the database.

RENAME TO new-username
Changes the user name and, if a security profile exists, assigns the security
profile associated with the old user name to the new user name. This might be
used, for example, when a person’s name changes (as through marriage), and,
therefore, his or her account on the operating system is changed accordingly.
The new-username must not currently exist in the database.

When the ALTER USER command is issued, the existing user name is removed
from the database and replaced with the new-username. If SECURITY
CHECKING is INTERNAL, then subsequent SHOW PROTECTION statements
will display the new name for the user, and all GRANT and REVOKE
statements will require the new-username. The new-username is not visible to
other sessions until the transaction containing the ALTER USER command is
committed.

See the RENAME Statement for further discussion.

username
An existing user name in the database.

6–230 SQL Statements

ALTER USER Statement

Usage Notes

• You must have the SECURITY privilege on the database, or the OpenVMS
SECURITY privilege, to alter a user.

• You can display existing users defined for a database by issuing a SHOW
USERS statement.

• When you issue the RENAME clause, the new user name must exist as an
operating system user name. See the Examples section.

Examples

Example 1: Renaming a User

SQL> create user KELLYN
cont> identified externally
cont> comment is ’User: Edward "Ned" Kelly’;
SQL>
SQL> -- The alternate name must exists at the operating system level
SQL> alter user KELLYN rename to N_KELLY;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-NOSUCHPRF, unknown profile user or role
SQL>
SQL> -- Use the new corporate user-id naming scheme
SQL> alter user KELLYN
cont> rename to NKELLY;

Example 2: Adding a profile to a user

This example creates a new profile that defines the DEFAULT transaction
and then assigns a profile to the user. The next time the user attaches to
the database, the START DEFAULT TRANSACTION statement will use the
defined profile instead of the standard READ ONLY default.

SQL> create profile READ_COMMITTED
cont> default transaction read write isolation level read committed wait 30;
SQL> show profile READ_COMMITTED

READ_COMMITTED
Default transaction read write wait 30
Isolation level read committed

SQL> alter user JAIN profile READ_COMMITTED;
SQL> show user JAIN;

JAIN
Identified externally
Account is unlocked
Profile: READ_COMMITTED
No roles have been granted to this user

SQL Statements 6–231

ALTER VIEW Statement

ALTER VIEW Statement

This statement allows the named view to be modified.

Environment

You can use the ALTER VIEW statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in a SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER VIEW <view-name> AS <select-expr>
<check-option-clause>
COMMENT IS ’text-literal’

/
RENAME TO <new-view-name>

select-expr =

select-clause
(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause offset-clause limit-to-clause

check-option-clause =

WITH CHECK OPTION
CONSTRAINT <check-option-name>

NO CHECK OPTION

6–232 SQL Statements

ALTER VIEW Statement

Arguments

AS
Replaces the view select expression and the definitions of the columns. The
number of expressions in the select list must match the original CREATE
VIEW column list.

COMMENT IS
Replaces the comment currently defined for the view (if any). The comment
will be displayed by the SHOW VIEW statement in Interactive SQL.

CONSTRAINT check-option-name
Specifies a name for the WITH CHECK OPTION constraint. If you omit the
name, SQL creates a name. However, Oracle Rdb recommends that you always
name constraints. If you supply a name for the WITH CHECK OPTION
constraint, the name must be unique in the schema.

The name for the WITH CHECK OPTION constraint is used by the
INTEG_FAIL error message when an INSERT or UPDATE statement violates
the constraint.

RENAME TO
Renames the current view. The new view name must not exist as the name of
an existing view, table, sequence, or synonym.

WITH CHECK OPTION
A constraint that places restrictions on update operations made to a view. The
check option clause ensures that any rows that are inserted or updated in a
view conform to the definition of the view. Do not specify the WITH CHECK
OPTION clause with views that are read-only. (The Usage Notes describe
which views SQL considers read-only.)

WITH NO CHECK OPTION
Removes any check option constraint currently defined for the view.

Usage Notes

• You must have ALTER privilege on the referenced view.

• The ALTER VIEW statement causes the RDB$LAST_ALTERED column
of the RDB$RELATIONS table for the named view to be updated with the
transaction’s timestamp.

SQL Statements 6–233

ALTER VIEW Statement

• Neither the column names nor their position may be modified using the
ALTER VIEW statement, nor can columns be added or dropped for a view.
These changes require both DROP VIEW and CREATE VIEW statements
to replace the existing definition.

• The RENAME TO clause allows the name of the view to be changed. This
clause requires that synonyms are enabled in the database. To enable
synonyms, use the ALTER DATABASE ...SYNONYMS ARE ENABLED
statement.

The old name will be used to create a synonym for the new name of this
view. This synonym can be dropped if the name is no longer used by
database definitions or applications.

This clause is equivalent to the RENAME VIEW statement.

• The COMMENT IS clause changes the existing comment on the view. This
clause is equivalent to the COMMENT ON VIEW statement.

• Changes to the column expression may change the column to read-only and
prevent referencing routines, triggers, and applications from performing
INSERT and UPDATE operations on those columns. Such changes are
reported at run time.

Similarly, if the view select table expression becomes read-only, referencing
queries may fail.

SQL considers as read-only views those with select expressions that:

Use the DISTINCT clause to eliminate duplicate rows from the result
table

Name more than one table or view in the FROM clause

Use a derived table in the FROM clause

Include a statistical function in the select list

Contain a UNION, EXCEPT DISTINCT (MINUS), INTERSECT
DISTINCT, GROUP BY, or HAVING clause

• If the AS clause changes the view to read-only, or includes a LIMIT TO
... ROWS clause on the main query, then the check option constraint is
implicitly removed.

• The ALTER VIEW statement can reference a table reserved in DATA
DEFINITION mode.

6–234 SQL Statements

ALTER VIEW Statement

Examples

Example 1: Changing the comment on a view

A comment can be added or changed on a view using the COMMENT IS clause
as shown in this example.

SQL> show view (comment) current_job
Information for table CURRENT_JOB

SQL> alter view CURRENT_JOB
cont> comment is ’Select the most recent job for the employee’;
SQL> show view (comment) current_job
Information for table CURRENT_JOB

Comment on table CURRENT_JOB:
Select the most recent job for the employee

SQL>

Example 2: Changing the column’s results of a view definition

The following view uses a derived table and join to collect the count of
employees in each department. The view is used in several reporting programs
used by the department and company managers.

SQL> create view DEPARTMENTS_SUMMARY
cont> as
cont> select department_code, d.department_name,
cont> d.manager_id, jh.employee_count
cont> from departments d inner join
cont> (select department_code, count (*)
cont> from job_history
cont> where job_end is null
cont> group by department_code)
cont> as jh (department_code, employee_count)
cont> using (department_code);
SQL>
SQL> show view DEPARTMENTS_SUMMARY;
Information for table DEPARTMENTS_SUMMARY

SQL Statements 6–235

ALTER VIEW Statement

Columns for view DEPARTMENTS_SUMMARY:
Column Name Data Type Domain
----------- --------- ------
DEPARTMENT_CODE CHAR(4)
DEPARTMENT_NAME CHAR(30)
Missing Value: None
MANAGER_ID CHAR(5)
Missing Value:
EMPLOYEE_COUNT INTEGER
Source:
select department_code, d.department_name,

d.manager_id, jh.employee_count
from departments d inner join

(select department_code, count (*)
from job_history
where job_end is null
group by department_code) as jh (department_code, employee_count)

using (department_code)

SQL>

The database administrator decides to create a column in the DEPARTMENTS
table to hold the count of employees (rather than using a query to gather
the total) and to maintain the value through triggers on EMPLOYEES and
JOB_HISTORY (not shown here). Now the view can be simplified without
resorting to a DROP VIEW and CREATE VIEW. The ALTER VIEW statement
preserves the dependencies on the view from other views, triggers, and routines
and so minimizes the work required to implement such a change.

SQL> alter table DEPARTMENTS
cont> add column EMPLOYEE_COUNT integer;
SQL>
SQL> alter view DEPARTMENTS_SUMMARY
cont> as
cont> select department_code, d.department_name,
cont> d.manager_id, d.employee_count
cont> from departments d;
SQL>
SQL> show view DEPARTMENTS_SUMMARY;
Information for table DEPARTMENTS_SUMMARY

6–236 SQL Statements

ALTER VIEW Statement

Columns for view DEPARTMENTS_SUMMARY:
Column Name Data Type Domain
----------- --------- ------
DEPARTMENT_CODE CHAR(4)
Missing Value: None
DEPARTMENT_NAME CHAR(30)
Missing Value: None
MANAGER_ID CHAR(5)
Missing Value:
EMPLOYEE_COUNT INTEGER
Source:
select department_code, d.department_name,

d.manager_id, d.employee_count
from departments d

SQL>

Example 3: Changing the WITH CHECK OPTION constraint of a view
definition

This example shows that a WITH CHECK OPTION constraint restricts the
inserted data to the view’s WHERE clause. Once the constraint is removed,
the INSERT is no longer constrained.

SQL> create view TOLIVER_EMPLOYEE
cont> as select * from EMPLOYEES where employee_id = ’00164’
cont> with check option;
SQL> insert into TOLIVER_EMPLOYEE (employee_id) value (’00000’);
%RDB-E-INTEG_FAIL, violation of constraint TOLIVER_EMPLOYEE_CHECKOPT1 caused operation to fail
-RDB-F-ON_DB, on database DISK1:[DATABASES]MF_PERSONNEL.RDB;1
SQL>
SQL> alter view TOLIVER_EMPLOYEE with no check option;
SQL>
SQL> insert into TOLIVER_EMPLOYEE (employee_id) value (’00000’);
1 row inserted
SQL>

SQL Statements 6–237

ATTACH Statement

ATTACH Statement

Specifies the name of a database and the source of the data definitions to
be accessed by interactive SQL or by a program at run time. Makes the
specified database part of the current database environment. The database
environment is the set of all databases with unique aliases in the current
connection.

The ATTACH statement lets you add new databases at run time; it has
no effect on the compile-time environment. To specify the compile-time
environment, use the DECLARE ALIAS statement.

You can name either a file or a repository path name to be used for the data
definitions.

If a transaction is currently active, SQL returns an informational message and
does not attach the specified database environment to the connection.

If a database is currently attached and you attach to another database without
using an alias, SQL detaches the current database environment and attaches
to the specified one in its place.

Environment

You can use the ATTACH statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ATTACH attach-string-literal
<attach-parameter>
<attach-parameter-marker>

attach-string-literal =

’ attach-expression ’

6–238 SQL Statements

ATTACH Statement

attach-expression =

FILENAME ’<attach-spec>’
ALIAS <alias> PATHNAME <path-name>

literal-user-auth

database-options
attach-options

literal-user-auth =

USER ’<username>’
USING ’<password>’

attach-spec =

<file-spec>
<node-spec>

node-spec =

<nodename>
<access-string>
::

access-string =

" <user-name> <password> "
" <VMS-proxy-user-name> "

SQL Statements 6–239

ATTACH Statement

database-options =

ELN
NSDS
rdb-options
VIDA
VIDA V1
VIDA V2
VIDA V2N
NOVIDA
DBIV1
DBIV31
DBIV70

rdb-options =

RDBVMS
RDB030
RDB031
RDB040
RDB041
RDB042
RDB050
RDB051
RDB060
RDB061
RDB070
RDB071

attach-options =

DBKEY SCOPE IS ATTACH
ROWID TRANSACTION
MULTISCHEMA IS ON

OFF
PRESTARTED TRANSACTIONS ARE ON

OFF
RESTRICTED ACCESS

NO

Arguments

ALIAS alias
A part of the attach expression that specifies a name for the attach to the
database. Specifying an alias lets your program or interactive SQL statements
refer to more than one database.

6–240 SQL Statements

ATTACH Statement

You do not have to specify an alias in the ATTACH statement. The default
alias in interactive SQL and in precompiled programs is RDB$DBHANDLE.
In the SQL module language, the default is the alias specified in the module
header. Using the default alias (either by specifying it explicitly in the
ATTACH statement or by omitting any alias) makes the database part of the
default environment. Specifying a default database means that statements
that refer to that database do not need to use an alias.

If a default alias was already declared, and you specify the default alias in the
alias clause (or specify any alias that was already declared), interactive SQL
issues an informational message.

In the following example, TESTDB is the first database attached and uses the
default alias. When no alias is specified for the second database attached, SQL
tries to assign it the default alias but finds that the default alias is already
declared.

SQL> ATTACH ’FILENAME testdb’;
SQL> ATTACH ’FILENAME otherdb’;
This alias has already been declared.
Would you like to override this declaration (No)? N
SQL-F-DEFDBDEC, A database has already been declared with the default alias
SQL> SHOW DATABASES;
Default alias:

Oracle Rdb database in file testdb
SQL> ATTACH ’FILENAME otherdb’;
This alias has already been declared.
Would you like to override this declaration (No)? Y
SQL> SHOW DATABASES;
Default alias:

Oracle Rdb database in file otherdb

attach-expression
Specifies a database to be added to the environment.

attach-parameter
A host language variable in precompiled SQL or a formal parameter in an SQL
module language procedure that specifies the database environment for the
connection. The attach parameter must contain an attach expression.

attach-parameter-marker
A parameter marker, denoted by question marks (?), in a dynamic SQL
statement. The attach parameter marker refers to a parameter that specifies
the database environment for the connection. The attach parameter marker
must specify a parameter that contains an attach expression.

SQL Statements 6–241

ATTACH Statement

attach-options
Specifies characteristics of the particular database attach. You can specify
more than one of these clauses.

attach-string-literal
A character string literal that specifies the database environment for the
connection. The attach string literal must contain an attach expression
enclosed in single quotation marks.

database-options
By default, the SQL precompiler determines the type of database it attaches to
from the type of database specified in compiling the program.

For more information on database options, see Section 2.10.

DBKEY SCOPE IS ATTACH
DBKEY SCOPE IS TRANSACTION
Controls when the database key of a deleted row can be used again by SQL.

• The default DBKEY SCOPE IS TRANSACTION means that SQL can reuse
the database key of a deleted table row (to refer to a newly inserted row)
as soon as the transaction that deleted the original row completes with a
COMMIT statement. (If the user who deleted the original row enters a
ROLLBACK statement, then the database key for that row cannot be used
again by SQL.)

During the connection of the user who entered the ATTACH statement, the
DBKEY SCOPE IS TRANSACTION clause specifies that a database key is
guaranteed to refer to the same row only within a particular transaction.

• The DBKEY SCOPE IS ATTACH clause means that SQL cannot use the
database key again (to refer to a newly inserted row) until all users who
have attached with DBKEY SCOPE IS ATTACH have detached from the
database.

It only requires one process to attach with DBKEY SCOPE IS ATTACH to
force all database users to assume this characteristic.

• Oracle Corporation recommends using DBKEY SCOPE IS TRANSACTION
to prevent excessive consumption of storage area space by overhead
space needed to support DBKEY SCOPE IS ATTACH, and to prevent
performance problems when storing new rows.

During the connection of the user who entered the ATTACH statement,
the DBKEY SCOPE IS ATTACH clause specifies that a database key is
guaranteed to refer to the same row until the user detaches from the
database.

6–242 SQL Statements

ATTACH Statement

For more information, see Section 2.6.5.

DISPLAY CHARACTER SET support-char-set
Specifies the character set encoding and characteristics expected of text strings
returned back to SQL from Oracle Rdb. See the Usage Notes under CREATE
DATABASE Statement for additional information.

FILENAME ’attach-spec’
A quoted string containing full or partial information needed to access a
database.

For an Oracle Rdb database, an attach specification contains the file
specification of the .rdb file.

When you use the FILENAME argument, any changes you make to database
definitions are entered only to the database system file, not to the repository.
If you specify FILENAME, your application attaches to the database with that
file name at run time.

For information regarding node-spec and file-spec, see Section 2.2.8.1.

literal-user-auth
Specifies the user name and password to enable access to databases,
particularly remote databases

This literal lets you explicitly provide user name and password information in
the attach expression.

When you use Oracle Rdb for OpenVMS to attach to a database in the same
cluster, you do not have to explicitly specify the user name and password.
Oracle Rdb implicitly authenticates the user whenever the user attaches to a
database.

However, when you use Oracle Rdb for OpenVMS to attach to a database on
a remote node, you must use one of the methods provided by Oracle Rdb to
access the database.

You can use one of the following methods to attach to a database on a remote
OpenVMS node.

• Explicitly provide the user name and password in the ATTACH statement.

• Explicitly provide the user name and password in the configuration file
RDB$CLIENT_DEFAULTS.DAT. The following example shows how to
include the information in the configuration file:

SQL Statements 6–243

ATTACH Statement

! User name to be used for authentication
SQL_USERNAME HELENG

! Password to be used for authentication
SQL_PASSWORD MYPASSWORD

• Use a DECnet proxy account on the remote system system.

• Embed the user name and password in the file specification.

• Use the RDB$REMOTE default account.

For information on proxy accounts, embedding the user name in the file
specification or using the RDB$REMOTE account, see the Oracle Rdb Guide to
SQL Programming.

MULTISCHEMA IS ON
MULTISCHEMA IS OFF
The MULTISCHEMA IS ON clause enables multischema naming for the
duration of the database attach. The MULTISCHEMA IS OFF clause
disables multischema naming for the duration of the database attach. On
attach, multischema naming defaults to the setting specified during database
definition.

You can use multischema naming only when attached to a database that was
created with the multischema attribute. If you specify the MULTISCHEMA
IS ON clause with a database that was not created with the multischema
attribute, SQL returns an error message, as shown in the following example:

SQL> ATTACH ’ALIAS PERS_ALIAS FILENAME personnel MULTISCHEMA IS ON’;
%SQL-F-NOPHYSMULSCH, The physical multischema attribute was not specified for
the database

PATHNAME path-name
A full or relative repository path name that specifies the source of the database
definitions. When you use the PATHNAME argument, any changes you make
to database definitions are entered in both the repository and the database
system file. Oracle Rdb recommends using the PATHNAME argument if you
have the repository on your system and you plan to use any data definition
statements.

If you specify PATHNAME, your application attaches to the database file name
extracted from the repository.

PRESTARTED TRANSACTIONS ARE ON
PRESTARTED TRANSACTIONS ARE OFF
Specifies whether Oracle Rdb enables or disables prestarted transactions.

6–244 SQL Statements

ATTACH Statement

Use the PRESTARTED TRANSACTIONS ARE OFF clause only if your
application uses a server process that is attached to the database for long
periods of time and causes the snapshot file to grow excessively. If you use the
PRESTARTED TRANSACTIONS ARE OFF clause, Oracle Rdb uses additional
I/O because each SET TRANSACTION statement must reserve a transaction
sequence number (TSN).

For most applications, Oracle Rdb recommends that you enable prestarted
transactions. The default is PRESTARTED TRANSACTIONS ARE ON. If you
use the PRESTARTED TRANSACTIONS ARE ON clause or do not specify
the PRESTARTED TRANSACTIONS clause, the COMMIT or ROLLBACK
statement for the previous read/write transaction automatically reserves the
TSN for the next transaction and reduces I/O.

You can define the RDMS$BIND_PRESTART_TXN logical name to define
the default setting for prestarted transactions outside of an application.
The PRESTARTED TRANSACTION clause overrides this logical name. For
more information, see the Oracle Rdb7 Guide to Database Performance and
Tuning. See also the ALTER and CREATE DATABASE clause PRESTARTED
TRANSACTIONS ARE ENABLED for more details.

RESTRICTED ACCESS
NO RESTRICTED ACCESS
Restricts access to the database. This allows you to access the database but
locks out all other users until you disconnect from the database. Setting
restricted access to the database requires DBADM privileges.

The default is NO RESTRICTED ACCESS if not specified.

ROWID SCOPE IS ATTACH
ROWID SCOPE IS TRANSACTION
The ROWID keyword is a synonym for the DBKEY keyword. See the DBKEY
SCOPE IS argument earlier in this Arguments list for more information.

USER ’username’
A character string literal that specifies the operating system user name that
the database system uses for privilege checking. Because the user name literal
is within the quoted attach-string, you must enclose the user name within two
sets of single quotation marks in interactive SQL.

This clause also sets the value of the SYSTEM_USER value expression.

SQL Statements 6–245

ATTACH Statement

USING ’password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause. Because the password literal is within the
quoted attach-string, you must enclose surround the password within two sets
of single quotation marks in interactive SQL.

Usage Notes

• If you attach to the same Oracle Rdb database twice, the SHOW statement
may fail with a deadlock error. You can avoid this error by issuing a
COMMIT statement. For example:

SQL> ATTACH ’FILENAME corporate_data’;
SQL> ATTACH ’ALIAS CORP2 FILENAME corporate_data’;
SQL> SHOW DATABASES
Default alias:

Oracle Rdb database in file corporate_data
Alias CORP2:

Oracle Rdb database in file corporate_data
SQL> SHOW TABLES;
User tables in database with filename corporate_data

DAILY_HOURS
DEPARTMENTS
PAYROLL
.
.
.
PERSONNEL.WEEKLY_WAGES A view.
RECRUITING.CANDIDATES
RECRUITING.COLLEGES
RECRUITING.DEGREES
RECRUITING.RESUMES

6–246 SQL Statements

ATTACH Statement

User tables in database with alias CORP2
%RDB-F-DEADLOCK, request failed due to resource deadlock
-RDMS-F-DEADLOCK, deadlock on record 41:413:1
SQL> COMMIT;
SQL> SHOW TABLES;

User tables in database with filename corporate_data
DAILY_HOURS
DEPARTMENTS
PAYROLL
.
.
.
User tables in database with alias CORP2
"CORP2.ADMINISTRATION".ACCOUNTING.DAILY_HOURS
"CORP2.ADMINISTRATION".ACCOUNTING.DEPARTMENTS
"CORP2.ADMINISTRATION".ACCOUNTING.PAYROLL
.
.
.
"CORP2.ADMINISTRATION".RECRUITING.COLLEGES
"CORP2.ADMINISTRATION".RECRUITING.DEGREES
"CORP2.ADMINISTRATION".RECRUITING.RESUMES

Examples

Example 1: Attaching a database by file name in interactive SQL and
specifying restricted access

This interactive SQL statement attaches the database defined by the file
specification mf_personnel to the current connection, and declares the alias
pers_alias for that database. Use the SHOW DATABASE statement to see the
database settings.

SQL> ATTACH ’ALIAS pers_alias FILENAME mf_personnel -
cont> RESTRICTED ACCESS’;

Example 2: Attaching a database by path name in interactive SQL

This interactive SQL statement attaches to the database file name extracted
from the repository. Use the SHOW DATABASE statement to see the database
settings.

SQL> ATTACH
cont> ’ALIAS PERS PATHNAME DISK3:[REPOSITORY.DEPT2]PERSONNEL’;

SQL Statements 6–247

ATTACH Statement

Example 3: Using an attach parameter in a program

This excerpt from an SQL module language procedure shows how you might
declare a parameter to contain an attach string. You would need to compile
the module with the PARAMETER COLONS clause in order to prefix the
parameter with a colon.

PROCEDURE attach_db
SQLCODE
attach_string char(155);

ATTACH :attach_string;

You could then write a C program that calls this procedure. The line that
passes the attach string would need a format such as the following:

main () {
long sqlcode;

attach_db(&sqlcode, "ALIAS CORP FILENAME corporate_data");

/* Now dynamic statements can refer to alias CORP */
}

Example 4: Explicitly providing the user name and password in the ATTACH
statement

The following example shows how to explicitly provide the user name and
password in the ATTACH statement.

SQL> ATTACH ’FILENAME FARSID::USER1:[GREMBOWSKI.DB]MF_PERSONNEL -
cont> USER ’’grembowski’’ USING ’’mypassword’’’;

6–248 SQL Statements

BEGIN DECLARE Statement

BEGIN DECLARE Statement

Delimits the beginning of a host language variable declaration section in a
precompiled program.

Environment

You can use the BEGIN DECLARE statement embedded in host language
programs to be precompiled.

Format

EXEC SQL BEGIN DECLARE SECTION ;

<host language variable declaration>

EXEC SQL END DECLARE SECTION ;

Arguments

BEGIN DECLARE SECTION
Delimits the beginning of host language variable declarations.

END DECLARE SECTION
Delimits the end of host language variable declarations.

; (semicolon)
Terminates the BEGIN DECLARE and END DECLARE statements.

Which terminator you should use depends on the language in which you
are embedding the host language variable. The following table shows which
terminator to use.

Required SQL Terminator

Host Language
BEGIN DECLARE
Statement

END DECLARE
Statement

COBOL END-EXEC END-EXEC

FORTRAN None required None required

Ada, C, Pascal, or PL/I ; (semicolon) ; (semicolon)

SQL Statements 6–249

BEGIN DECLARE Statement

host language variable declaration
A variable declaration embedded in a program.

See Section 2.2.13 for full details on host language variable definitions.

Usage Notes

• The ANSI/ISO SQL standard specifies that host language variables used
in embedded SQL statements must be declared within a pair of embedded
SQL BEGIN DECLARE . . . END DECLARE statements. If ANSI/ISO
SQL compliance is important for your application, you should include all
declarations for host language variables used in embedded SQL statements
within a BEGIN DECLARE . . . END DECLARE block.

• SQL does not require that you enclose host language variables with BEGIN
DECLARE and END DECLARE statements. SQL does, however, issue a
warning message if both of the following conditions exist:

Your program includes a section delimited by BEGIN DECLARE and
END DECLARE statements.

You refer to a host language variable that is declared outside the
BEGIN DECLARE and END DECLARE block.

• In addition to host language variable declarations, you can include other
host language statements within a BEGIN DECLARE . . . END DECLARE
block.

Example

Example 1: Declaring a host language variable within BEGIN . . . END
DECLARE statements

The following example shows portions of a Pascal program. The first part of
the example declares the host language variable LNAME within the BEGIN
DECLARE and END DECLARE statements. The semicolon is necessary as a
terminator because the language is Pascal.

The second part of the example shows a singleton SELECT statement that
specifies a one-row result table. The statement assigns the value in the row to
the previously declared host language variable LNAME.

6–250 SQL Statements

BEGIN DECLARE Statement

EXEC SQL BEGIN DECLARE SECTION;
LNAME: packed array [1..20] of char;

EXEC SQL END DECLARE SECTION;
.
.
.

EXEC SQL
SELECT FIRST_NAME

INTO :LNAME
FROM EMPLOYEES
WHERE EMPLOYEE_ID = "00164";

SQL Statements 6–251

CALL Statement for Simple Statements

CALL Statement for Simple Statements

Invokes a stored procedure.

When you define a module with the CREATE MODULE statement, SQL stores
the module as an object in an Oracle Rdb database. It also stores each of the
module’s procedures and functions. The module procedures that reside in an
Oracle Rdb database are called stored procedures. In contrast, nonstored
procedures refer to module procedures that reside outside the database in
SQL module files. See the CREATE MODULE Statement for more information
on creating stored procedures.

For optional information on invoking stored procedures, see the CALL
Statement for Compound Statements.

Environment

You can use the simple statement CALL:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement that are dynamically executed

Format

CALL <stored-procedure-name> call-argument-list

call-argument-list =

()
<literal>
<parameter>
<variable>

,

6–252 SQL Statements

CALL Statement for Simple Statements

Arguments

call-argument-list
Passes a list of literal, parameter values (parameter markers for dynamic
execution), or variables to the called stored procedure.

You can pass a literal only to an IN parameter of a stored procedure. You
cannot pass a literal to an OUT or INOUT parameter.

In SQL statements to be dynamically executed, you refer to both the main
and indicator parameters with a single parameter marker (?). See Section
2.2.13 for details about how to use parameters in programs for static as well as
dynamic SQL statement execution.

procedure-name
The name of a stored procedure.

Usage Notes

• If the execution of a stored procedure results in an exception, SQL reports
the exception as the result of the CALL.

• The number of parameters in the simple statement CALL must match the
number of parameters in the procedure that it calls.

• The data types of the parameters used in the simple statement CALL must
be equivalent to the data types used in the procedure that it calls.

• Stored and nonstored modules called by the same application cannot
have the same name. If you attempt to invoke a stored module while a
nonstored module with the same name is active, you receive the following
error:

%RDB-E-IMP_EXC, facility-specific limit exceeded
-RDMS-E-MODEXTS, there is another module named SALARY_ROUTINES in this
database

Examples

Example 1: Calling a stored procedure

The following examples show the definition of a stored procedure, NEW_
SALARY_PROC, and the nonstored procedure, CALL_NEW_SALARY, that
invokes it with the simple statement CALL.

SQL Statements 6–253

CALL Statement for Simple Statements

SQL> ! The following shows the definition of the stored procedure:
SQL> !
SQL> CREATE MODULE NEW_SALARY_PROC
cont> LANGUAGE SQL
cont> PROCEDURE NEW_SALARY_PROC
cont> (:ID CHAR (5),
cont> :NEW_SALARY INTEGER (2));
cont> BEGIN
cont> UPDATE SALARY_HISTORY
cont> SET SALARY_END = CURRENT_TIMESTAMP
cont> WHERE EMPLOYEE_ID = :ID;
cont> INSERT INTO SALARY_HISTORY
cont> (EMPLOYEE_ID, SALARY_AMOUNT,
cont> SALARY_START, SALARY_END)
cont> VALUES (:ID, :NEW_SALARY,
cont> CURRENT_TIMESTAMP, NULL);
cont> END;
cont> END MODULE;
SQL>

The following example shows an excerpt of an SQL module that contains the
nonstored procedure that calls the stored procedure.

.

.

.
PROCEDURE CALL_NEW_SALARY

:ID CHAR(5),
:ID_IND SMALLINT,
:NEW_SALARY INTEGER (2),
:NEW_SALARY_IND SMALLINT,
SQLCODE;

CALL NEW_SALARY_PROC (:ID, :NEW_SALARY);
.
.
.

Example 2: Calling a procedure in interactive SQL

The following example shows that you use interactive SQL to invoke a stored
procedure with the simple statement CALL:

SQL> DECLARE :X INTEGER;
SQL> BEGIN
cont> SET :X = 0;
cont> END;
SQL> CALL P2 (10, :X);

6–254 SQL Statements

CALL Statement for Compound Statements

CALL Statement for Compound Statements

Invokes an external or stored procedure from within a compound statement.
That is, invocation must occur with a BEGIN . . . END block.

The OUT and INOUT arguments cannot be general value expressions. They
must be variables or parameters. The IN argument can be a general value
expression.

When you register a procedure definition with the CREATE PROCEDURE
statement, you store information in the database about an external procedure
written in a 3GL language. External procedures reside outside the database.
The CREATE PROCEDURE statement is documented under the CREATE
ROUTINE Statement. See the CREATE ROUTINE Statement for more
information on creating external procedures.

For optional information on invoking stored procedures, see the CALL
Statement for Simple Statements.

Environment

You can use the compound statement CALL:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CALL <procedure-name> ()
value-expr
DEFAULT

,

Arguments

DEFAULT
Requests that Oracle Rdb use the DEFAULT expression defined for the
parameter. The DEFAULT can be defined for an IN parameter during
the CREATE MODULE . . . PROCEDURE or ALTER MODULE . . . ADD

SQL Statements 6–255

CALL Statement for Compound Statements

PROCEDURE statements. If no DEFAULT clause exists then the NULL
expression is assumed.

procedure-name
The name of the external or stored procedure being invoked.

value-expr
Any value expression except DBKEY or aggregate functions. See Section 2.6
for more information on value expressions.

Usage Notes

• The compound statement CALL can accept, as IN parameters, any value
expression. The simple statement CALL is limited to numeric and string
literals only and cannot appear within a compound statement.

• The data types of the parameters used in the compound statement CALL
must be compatible with the data types used in the procedure that it calls.

• The number of parameters in the compound statement CALL must match
the number of parameters in the procedure that it calls.

• The OUT and INOUT parameters must correspond to updatable variables
or other OUT and INOUT parameters.

• The values of SQLCODE and SQLSTATE set prior to the compound
statement CALL can be examined by the called procedure using the GET
DIAGNOSTICS statement. Upon execution of the called procedure, the
value in an SQLCODE and SQLSTATE status parameter of the last
statement is returned to the caller and can be retrieved using the GET
DIAGNOSTICS statement.

• The compound statement CALL can be used within a stored procedure or
function to call another stored procedure. When an exception occurs in a
nested CALL, that procedure or function and all calling routines return to
the topmost caller.

• You cannot call a stored procedure that is in use by the current CALL
statement. Recursion is not allowed.

• Oracle Rdb allows the CALL statement in a compound statement to omit
trailing IN mode parameters which have had a DEFAULT value defined
in the procedure definition. Also supported is the DEFAULT keyword to
replace an explicit value for the parameter.

6–256 SQL Statements

CALL Statement for Compound Statements

However, the simple CALL statement (used outside a BEGIN END block)
is not adaptable in this way and requires a full set of parameters and
values. This is because a parameter signature is calculated for this type of
CALL statement so that the parameter block passed by the calling routine
and used by the called routine match exactly in parameter count and data
types.

This is a permanent restriction for the simple CALL statement.

The following example shows that truncated parameter lists are fully
supported by the compound use form of the CALL statement, but not by
the simple CALL statement.

SQL> ATTACH ’FILENAME db$:scratch’;
SQL> CREATE MODULE mmm
cont> PROCEDURE mmm_p (IN :a INTEGER DEFAULT 0, IN :b INTEGER DEFAULT 1);
cont> TRACE :a, :b;
cont> END MODULE;
SQL> SET FLAGS ’Trace’;
SQL> CALL mmm_p (10,20);
~Xt: 10 20
SQL> CALL mmm_p (10);
%SQL-F-ARGCOUNT, Procedure MMM_P expected 2 parameters, was passed 1
SQL> call MMM_P ();
%SQL-F-ARGCOUNT, Procedure MMM_P expected 2 parameters, was passed 0
SQL> begin
cont> CALL mmm_p (10,20);
cont> CALL mmm_p (10);
cont> call mmm_p ();
cont> END;
~Xt: 10 20
~Xt: 10 1
~Xt: 0 1

For maximum flexibility, use the CALL statement inside a compound
statement which supports truncated parameter lists, the DEFAULT
keyword, and full value expressions for parameter arguments.

Examples

Example 1: Calling an external routine within a compound statement

BEGIN
DECLARE :param1 INTEGER;
CALL extern_routine (:param1, 3);

END;

SQL Statements 6–257

CALL Statement for Compound Statements

Example 2: Calling a stored procedure from a stored function

SQL> CREATE MODULE utility_functions
cont> LANGUAGE SQL
cont> --
cont> PROCEDURE trace_date (:dt DATE);
cont> BEGIN
cont> TRACE :dt;
cont> END;
cont> --
cont> FUNCTION mdy (IN :dt DATE) RETURNS CHAR(10)
cont> COMMENT ’Returns the date in month/day/year format’;
cont> BEGIN
cont> IF :dt IS NULL THEN
cont> RETURN ’**/**/****’;
cont> ELSE
cont> CALL trace_date (:dt);
cont> RETURN CAST(EXTRACT(MONTH FROM :dt) AS VARCHAR(2)) || ’/’ ||
cont> CAST(EXTRACT(DAY FROM :dt) AS VARCHAR(2)) || ’/’ ||
cont> CAST(EXTRACT(YEAR FROM :dt) AS VARCHAR(4));
cont> END IF;
cont> END;
cont> END MODULE;

6–258 SQL Statements

CASE (Searched) Control Statement

CASE (Searched) Control Statement

Executes one of a sequence of alternate statement blocks in a compound
statement of a multistatement procedure. Unlike the simple CASE control
statement, the searched CASE control statement supports arbitrary predicates
for the WHEN clause that can contain variable and parameter references.

Environment

You can use the searched CASE control statement in a compound statement of
a multistatement procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

case-searched-statement =

CASE WHEN predicate THEN

compound-use-statement

END CASE
ELSE compound-use-statement

Arguments

ELSE compound-use-statement
Specifies the set of SQL statements to be executed when the WHEN clause
evaluates to FALSE or UNKNOWN.

THEN compound-use-statement
Specifies the set of SQL statements to be executed when the WHEN clause
evaluates to TRUE.

SQL Statements 6–259

CASE (Searched) Control Statement

WHEN predicate
Determines whether the compound use statements in the THEN clause are
to be executed or the compound use statements in the ELSE clause are to
be executed. If the predicate evaluates to TRUE, then the compound use
statements in the THEN clause are executed. If the predicate evaluates to
FALSE or UNKNOWN, then the compound use statements in the ELSE clause
are executed.

Usage Notes

• If the CASE value expression cannot find a matching WHEN clause, SQL
can take one of the following actions:

If an optional ELSE clause is included, SQL executes the set of
statements associated with the ELSE clause.

If there is no ELSE clause, SQL raises an exception.

Examples

Example 1: Specifying Predicates with Variable References

SQL> CREATE TABLE T (C INT);
SQL> BEGIN
cont> DECLARE :V INTEGER = 10;
cont> DECLARE :X INTEGER = 0;
cont> CASE
cont> WHEN :V = 1 THEN INSERT INTO T(C) VALUES (:X + 1);
cont> WHEN :V = 2 THEN INSERT INTO T(C) VALUES (:X + 2);
cont> WHEN :V > 3 THEN INSERT INTO T(C) VALUES (:X);
cont> ELSE INSERT INTO T(C) VALUES (-1);
cont> END CASE;
cont> END;

6–260 SQL Statements

CASE (Simple) Control Statement

CASE (Simple) Control Statement

Executes one of a sequence of alternate statement blocks in a compound
statement of a multistatement procedure.

Environment

You can use the simple CASE control statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format
case-statement =

CASE value-expr

WHEN <literal> THEN compound-use-statement
NULL

,

END CASE
ELSE compound-use-statement

Arguments

CASE value-expr
An expression that evaluates to a single value. SQL compares the CASE clause
value expression with each WHEN clause literal value in the WHEN clauses
until it finds a match.

The value expression cannot contain a column specification that is not part of a
column select expression.

See Section 2.6 for a complete description of the variety of value expressions
that SQL provides.

SQL Statements 6–261

CASE (Simple) Control Statement

ELSE compound-use-statement
Executes a set of SQL statements when SQL cannot find a WHEN clause that
matches the value expression in the CASE clause.

See the Compound Statement for a description of the SQL statements that are
valid in a compound statement.

THEN compound-use-statement
Executes the set of SQL statements associated with the first WHEN clause in
which its argument value matches the CASE value expression.

WHEN literal
WHEN NULL
The literal or NULL value of the WHEN clause that SQL compares with the
value expression of the CASE clause. Most CASE control statements include a
set of WHEN clauses.

When the values of the WHEN and CASE clauses match, SQL executes the
SQL statements associated with that WHEN clause. Control then drops out of
the CASE control statement and returns to the next SQL statement after the
END CASE clause.

Usage Notes

• If the CASE value expression cannot find a matching WHEN clause, SQL
can take one of the following actions:

If an optional ELSE clause is included, SQL executes the set of
statements associated with the ELSE clause.

If there is no ELSE clause, SQL raises an exception.

• The data type of the CASE value expression and the data type of the
WHEN clause literal value must be comparable.

• The literal values of the WHEN clauses in a CASE control statement
must be unique. As a corollary, no two WHEN clauses in a CASE control
statement can specify a NULL value. The simple CASE statement allows
you to provide a list of literal values for every WHEN clause.

6–262 SQL Statements

CASE (Simple) Control Statement

Examples

Example 1: Using the CASE control statement

char x[11];
long x_ind;

EXEC SQL
DECLARE ALIAS FOR FILENAME personnel ;

EXEC SQL
BEGIN

CASE :x INDICATOR :x_ind
WHEN ’Abrams’ THEN

DELETE FROM employees WHERE . . . ;
WHEN NULL THEN

DELETE FROM employees WHERE . . . ;
ELSE

DELETE FROM employees WHERE . . . ;
END CASE ;

END ;

Example 2: Using a List of Literal Values with the Case Statement

SQL> DECLARE :CODE CHAR(4);
SQL> BEGIN
cont> JOB_LOOP:
cont> FOR :JOBFOR
cont> AS EACH ROW OF
cont> SELECT * FROM JOBS JOB
cont> DO
cont> SET :CODE = :jobfor.JOB_CODE;
cont> CASE :CODE
cont> WHEN ’ASCK’ THEN
cont> UPDATE JOBS
cont> SET MINIMUM_SALARY=10000
cont> WHERE JOB_CODE = :code;
cont> WHEN ’ADMN’, ’JNTR’, ’SCTR’ THEN
cont> UPDATE JOBS
cont> SET MINIMUM_SALARY=15000
cont> WHERE JOB_CODE = :code;
cont> ELSE
cont> UPDATE JOBS
cont> SET MINIMUM_SALARY=:jobfor.MINIMUM_SALARY*1.1
cont> WHERE JOB_CODE=:code;
cont> END CASE;
cont> END FOR;
cont> END;
SQL>

SQL Statements 6–263

CLOSE Statement

CLOSE Statement

Closes an open cursor.

Environment

You can use the CLOSE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format

CLOSE <cursor-name>
<cursor-name-parameter>

Arguments

cursor-name
cursor-name-parameter
The name of the cursor you want to close. Use a parameter if the cursor
referred to by the cursor name was declared at run time with an extended
dynamic DECLARE CURSOR statement. Specify the same cursor name
parameter used in the dynamic DECLARE CURSOR statement.

You can use a parameter to refer to the cursor name only when the CLOSE
statement is accessing a dynamic cursor.

Usage Notes

• You cannot close a cursor that is not open, or close a cursor that was not
named in a DECLARE CURSOR statement.

• If you open a cursor after closing it, SQL positions the cursor before the
first row in the result table.

• You can use the SQL CLOSE statement to close cursors individually or
use the sql_close_cursors() routine to close all open cursors. The sql_close_
cursors() routine takes no arguments. For an example of this routine, see
sql_close_cursors.

6–264 SQL Statements

CLOSE Statement

Examples

Example 1: Closing a cursor declared in a PL/I program

This program fragment uses embedded DECLARE CURSOR, OPEN, and
FETCH statements to retrieve and print the name and department of
managers. The CLOSE statement closes the cursor after the FETCH statement
fails to find any more rows in the result table (when SQLCODE is set to 100).

/* Declare the cursor: */
EXEC SQL DECLARE MANAGER CURSOR FOR

SELECT E.FIRST_NAME, E.LAST_NAME, D.DEPARTMENT_NAME
FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.EMPLOYEE_ID = D.MANAGER_ID ;

/* Open the cursor: */
EXEC SQL OPEN MANAGER;

/* Start a loop to process the rows of the cursor: */
DO WHILE (SQLCODE = 0);

/* Retrieve the rows of the cursor
and put the value in host language variables: */
EXEC SQL FETCH MANAGER INTO :FNAME, :LNAME, :DNAME;
/* Print the values in the variables: */

.

.

.
END;

/* Close the cursor: */
EXEC SQL CLOSE MANAGER;

SQL Statements 6–265

COMMENT ON Statement

COMMENT ON Statement

Adds or changes a comment about the following database objects:

• Catalog

• Collating sequence

• Column

• Constraint

• Domain

• Database

• Function

• Index

• Index partition

• Module

• Outline

• Procedure

• Profile

• Role

• Schema

• Sequence

• Storage map

• Storage map partition

• Synonym

• Table

• Trigger

• User

• View

SQL displays the comments on these objects when you issue a SHOW
statement.

6–266 SQL Statements

COMMENT ON Statement

Environment

You can use the COMMENT ON statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

COMMENT ON objects-1 IS ’string’
objects-2 /

objects1 =

<table-name> (<col-name> IS ’string’)
/

,
CATALOG <catalog-name>
COLLATING SEQUENCE <col-sequence-name>
COLUMN <table-name>.<col-name>
CONSTRAINT <constraint-name>
DATABASE

ALIAS <alias-name>
DOMAIN <domain-name>
FUNCTION <function-name>
INDEX <index-name>

PARTITION <partition-name>
MODULE <module-name>
PROCEDURE <procedure-name>
PROFILE <profile-name>

objects2 =

ROLE <role-name>
SCHEMA <schema-name>
SEQUENCE <sequence-name>
STORAGE MAP <map-name>

PARTITION <partition-name>
SYNONYM <synonym-name>
TABLE <table-name>
TRIGGER <trigger-name>
USER <user-name>
VIEW <view-name>

SQL Statements 6–267

COMMENT ON Statement

Arguments

CATALOG catalog-name
Names the catalog for which you want to create a comment. If the catalog
is not in the default schema, you must qualify the catalog name in the
COMMENT ON statement with an alias name.

COLLATING SEQUENCE column-sequence-name
Names the collating sequence for which you want to create a comment. If the
collating sequence is not in the default schema, you must qualify the collating
sequence name in the COMMENT ON statement with an alias name.

COLUMN column-name
Names the column for which you want to create a comment. You must qualify
the column name with a table name. If the column is not in a table in the
default schema, you must qualify the column name in the COMMENT ON
statement with both a table name and an alias name.

CONSTRAINT constraint-name
Names the constraint for which you want to create a comment. If the
constraint is not in the default schema, you must qualify the constraint
name in the COMMENT ON statement with an alias name.

DATABASE
This statement writes the new comment to the database. If the ALIAS clause
is omitted, the default database is used. The alias-name must be an alias
specified by an ATTACH or CONNECT statement during this session.

DOMAIN domain-name
Names the domain for which you want to create a comment. If the domain
is not in the default schema, you must qualify the domain name in the
COMMENT ON statement with an alias name.

FUNCTION function-name
Names the function for which you want to create a comment. If the function
is not in the default schema, you must qualify the function name in the
COMMENT ON statement with an alias name.

INDEX index-name
PARTITION partition-name
Names the index and, optionally, a partition in the named index, for which you
want to create a comment. If the index is not in the default schema, you must
qualify the index name in the COMMENT ON statement with an alias name.

6–268 SQL Statements

COMMENT ON Statement

IS ’string’
Specifies the comment. SQL displays the text when it executes a SHOW
statement in interactive SQL. Enclose the comment within single quotation
marks (’) and separate multiple lines in a comment with a slash mark (/).

MODULE module-name
Names the module for which you want to create a comment. If the module
is not in the default schema, you must qualify the module name in the
COMMENT ON statement with an alias name.

PROCEDURE procedure-name
Names the procedure for which you want to create a comment. If the procedure
is not in the default schema, you must qualify the procedure name in the
COMMENT ON statement with an alias name.

PROFILE profile-name
Names the profile for which you want to create a comment. If the profile is not
in the default schema, you must qualify the profile name in the COMMENT
ON statement with an alias name.

ROLE role-name
Names the role for which you want to create a comment. If the role is not in
the default schema, you must qualify the role name in the COMMENT ON
statement with an alias name.

SCHEMA schema-name
Names the schema for which you want to create a comment. You must create
the schema first. If the schema is not in the default schema, you must qualify
the schema name in the COMMENT ON statement with an alias name.

SEQUENCE sequence-name
Names the sequence for which you want to create a comment. If the sequence
is not in the default schema, you must qualify the sequence name in the
COMMENT ON statement with an alias name.

STORAGE MAP map-name
PARTITION partition-name
Names the storage map and, optionally, a vertical or horizontal partition within
that storage map, for which you want to create a comment. If the storage map
is not in the default schema, you must qualify the storage map name in the
COMMENT ON statement with an alias name.

SQL Statements 6–269

COMMENT ON Statement

SYNONYM synonym-name
This performs the same function as the ALTER SYNONYM . . . COMMENT
IS syntax. The synonym-name must be the name of an existing synonym. A
database alias can be used to select a database other than the default database
alias.

TABLE table-name
Names the table for which you want to create a comment. If the table is not
in the default schema, you must qualify the table name in the COMMENT ON
statement with an alias name.

table-name col-name
Names the table and the column or columns in that table for which you want
to create a comment.

TRIGGER trigger-name
Names the trigger for which you want to create a comment. If the trigger is not
in the default schema, you must qualify the trigger name in the COMMENT
ON statement with an alias name.

USER user-name
Names the user (created with the CREATE USER statement) for which you
want to create a comment. If the user is not in the default schema, you must
qualify the user name in the COMMENT ON statement with an alias name.

VIEW view-name
Names the view for which you want to create a comment. If the view is not in
the default schema, you must qualify the view name in the COMMENT ON
statement with an alias name.

Usage Notes

• You must have ALTER privilege on the object, or in the case of constraints
and triggers, you must have ALTER privilege on the parent object.

• You cannot specify the COMMENT ON statement in a CREATE
DATABASE statement.

6–270 SQL Statements

COMMENT ON Statement

SQL> CREATE DATABASE FILENAME TEST
cont> CREATE TABLE TEST_TABLES (COL1 REAL)
cont> COMMENT ON TABLE TEST_TABLES IS ’This will not work’;
COMMENT ON TABLE TEST_TABLES IS ’This will not work’;
^
%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, GRANT, CREATE, ;,
%SQL-F-LOOK_FOR_FIN, found COMMENT instead

• The maximum length for each string literal in a comment is 1,024
characters. The total comment length must be less than 2 GB.

• The COMMENT ON TABLE statement can reference a table reserved in
DATA DEFINITION mode.

Examples

Example 1: Specifying a comment for columns and tables

SQL> -- Change the comment for the WORK_STATUS table:
SQL> COMMENT ON TABLE WORK_STATUS IS
cont> ’Links a status code with 1 of 3 statuses’ ;
SQL> SHOW TABLE WORK_STATUS
Information for table WORK_STATUS

Comment on table WORK_STATUS: Links a status code with 1 of 3 statuses
.
.
.

SQL> -- Create a comment for the DEPARTMENT_CODE
SQL> -- column in the DEPARTMENTS table:
SQL> COMMENT ON COLUMN DEPARTMENTS.DEPARTMENT_CODE IS
cont> ’Also used in JOB_HISTORY table’;
SQL> SHOW TABLE DEPARTMENTS
Information for table DEPARTMENTS

Comment on table DEPARTMENTS:
information about departments in corporation

Columns for table DEPARTMENTS:
Column Name Data Type Domain
----------- --------- ------
DEPARTMENT_CODE CHAR(4) DEPARTMENT_CODE_DOM
Comment: Also used in JOB_HISTORY table
.
.
.

SQL Statements 6–271

COMMENT ON Statement

Example 2: Specifying a comment containing more than one string literal

SQL> COMMENT ON COLUMN EMPLOYEES.EMPLOYEE_ID IS
cont> ’1: Used in SALARY_HISTORY table as Foreign Key constraint’ /
cont> ’2: Used in JOB_HISTORY table as Foreign Key constraint’;
SQL> SHOW TABLE (COL) EMPLOYEES;
Information for table EMPLOYEES

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM
Comment: 1: Used in SALARY_HISTORY table as Foreign Key constraint

2: Used in JOB_HISTORY table as Foreign Key constraint
Primary Key constraint EMPLOYEES_PRIMARY_EMPLOYEE_ID
LAST_NAME CHAR(14) LAST_NAME_DOM
FIRST_NAME CHAR(10) FIRST_NAME_DOM
MIDDLE_INITIAL CHAR(1) MIDDLE_INITIAL_DOM
ADDRESS_DATA_1 CHAR(25) ADDRESS_DATA_1_DOM
ADDRESS_DATA_2 CHAR(20) ADDRESS_DATA_2_DOM
CITY CHAR(20) CITY_DOM
STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(5) POSTAL_CODE_DOM
SEX CHAR(1) SEX_DOM
BIRTHDAY DATE VMS DATE_DOM
STATUS_CODE CHAR(1) STATUS_CODE_DOM

Example 3: Adding a Comment to a Trigger

SQL> COMMENT ON TRIGGER EMPLOYEE_ID_CASCADE_DELETE IS
cont> ’When an employee is deleted from EMPLOYEES, delete’/
cont> ’corresponding records from the other tables in the’/
cont> ’database.’;
SQL> SHOW TRIGGER EMPLOYEE_ID_CASCADE_DELETE

EMPLOYEE_ID_CASCADE_DELETE

6–272 SQL Statements

COMMENT ON Statement

Source:
EMPLOYEE_ID_CASCADE_DELETE

BEFORE DELETE ON EMPLOYEES
(DELETE FROM DEGREES D WHERE D.EMPLOYEE_ID =
EMPLOYEES.EMPLOYEE_ID)
FOR EACH ROW

(DELETE FROM JOB_HISTORY JH WHERE JH.EMPLOYEE_ID =
EMPLOYEES.EMPLOYEE_ID)
FOR EACH ROW

(DELETE FROM SALARY_HISTORY SH WHERE SH.EMPLOYEE_ID =
EMPLOYEES.EMPLOYEE_ID)
FOR EACH ROW

-- Also, if an employee is terminated and that employee
-- is the manager of a department, set the manager_id
-- null for that department.
(UPDATE DEPARTMENTS D SET D.MANAGER_ID = NULL
WHERE D.MANAGER_ID = EMPLOYEES.EMPLOYEE_ID)
FOR EACH ROW.

.

.

.
Comment: When an employees is deleted from EMPLOYEES, delete

corresponding records from the other tables in the
database.

Example 4: Adding Comments to Multiple Columns in a Table

SQL> COMMENT ON JOBS (JOB_CODE is ’Required column’,
cont> WAGE_CLASS is ’Valid values are: 1, 2, 3, or 4’);
SQL> SHOW TABLE (COLUMNS) JOBS;
Information for table JOBS
Columns for table JOBS:
Column Name Data Type Domain
----------- --------- ------
JOB_CODE CHAR(4) JOB_CODE
Comment: Required column
Missing Value: None
WAGE_CLASS CHAR(1) WAGE_CLASS
Comment: Valid values are: 1, 2, 3, or 4
JOB_TITLE CHAR(20) JOB_TITLE
Missing Value: None
MINIMUM_SALARY INTEGER(2) SALARY
MAXIMUM_SALARY INTEGER(2) SALARY

SQL Statements 6–273

COMMIT Statement

COMMIT Statement

Ends a transaction and makes permanent any changes that you made during
that transaction. The COMMIT statement also:

• Releases all locks

• Closes all open cursors (unless they are WITH HOLD cursors)

• Prestarts a new transacation if prestarted transactions are enabled

Environment

You can use the COMMIT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

commit-statement =

COMMIT WORK
AND CHAIN

Arguments

AND CHAIN
When AND CHAIN is used, a new transaction is implicitly started using the
same attributes as the previously commited transaction.

WORK
An optional keyword that has no effect on the COMMIT statement.

6–274 SQL Statements

COMMIT Statement

Usage Notes

• The COMMIT statement affects the following:

All databases named in the ON clause of the last DECLARE
TRANSACTION or SET TRANSACTION statement plus any databases
that were declared since the last DECLARE TRANSACTION or SET
TRANSACTION statement. If the last DECLARE TRANSACTION
or SET TRANSACTION statement did not include an ON clause, the
COMMIT statement affects all declared databases. If the COMMIT
statement is embedded in a program, it affects all the databases
declared in the module of the host language program where the
transaction was started.

All changes made to the data using the DELETE, UPDATE,
TRUNCATE TABLE, and INSERT statements.

All changes made to the data definitions using the ALTER,
CREATE, DROP, GRANT, REVOKE, RENAME, and COMMENT
ON statements.

• In interactive SQL, if you do not issue a COMMIT or ROLLBACK
statement before the EXIT statement, SQL returns this message:

There are uncommitted changes to this database.
Would you like a chance to ROLLBACK these changes (No)?

The prompt lets you type YES and returns you to interactive SQL. If you
type NO or press the Return key, SQL commits the changes made during
the last transaction.

Interactive SQL also has a QUIT statement. The QUIT statement stops an
interactive SQL session, rolls back any changes you made, and returns you
to the DCL prompt. The QUIT statement does not prompt you for a chance
to commit changes.

• In precompiled programs, if your program exits before it issues a COMMIT
or ROLLBACK statement, SQL commits the changes if the exit status
is successful and rolls them back if it is not. However, Oracle Rdb
recommends that you always use an explicit COMMIT or ROLLBACK
statement to end a transaction.

• You cannot use the COMMIT statement in an ATOMIC compound
statement.

• The COMMIT statement may not be executed from a SQL function or
trigger or any stored procedure called from a SQL function or trigger.

SQL Statements 6–275

COMMIT Statement

• The AND CHAIN clause is only permitted in a compound statement (that
is, in a BEGIN . . . END block), or as the body of a stored procedure.

• When AND CHAIN is used a new transaction is implicitly started
using the same attributes as the previously commited or rolled back
transaction. Attributes such as READ WRITE, READ ONLY, RESERVING,
EVALUATING, WAIT, and ISOLATION LEVEL are retained for the new
transaction.

Applications can use this new clause to simplify applications, since the
complex transaction attributes need only be specified once.

• When the SET FLAGS option TRANSACTION_PARAMETERS is specified,
a line of output is written to identify the chained transaction. Each SET
TRANSACTION assigns a unique sequence number which is displayed
after each transaction action line.

~T Restart_transaction (3) on db: 1, db count=1

• When the COMMIT statement is executed within a compound statement
and no transaction is active, a success status (SQLSTATE or SQLCODE) is
the result.

However, if the COMMIT statement is executed in a single statement, it
will result in an error. This behavior can be modified by setting the dialect
to SQL92 or SQL99, or by using the SET QUIET COMMIT statement.
Refer to the SET DIALECT and SET QUIET COMMIT statements for
more details. For SQL Module Language or SQL pre-compiler applications,
refer to the QUIET_COMMIT qualifier and the QUIET COMMIT clause in
the module header.

Examples

Example 1: Using the COMMIT statement to write a change to the database

This example gives a raise to an employee. To maintain a consistent database,
the program performs three operations within one transaction. The program:

• Prompts for an employee identification number (:ID).

• Prompts for a percentage increase, which is used to calculate the raise.

• Uses the UPDATE statement to change the current salary row by changing
its salary ending date from null to the current date.

• Uses the INSERT statement to create a new row in the SALARY_HISTORY
table. All the columns of the new row can be derived from columns of the
old row, except the start date, which must be calculated from the current
date. SQL calculates a new value for the SALARY_AMOUNT column from

6–276 SQL Statements

COMMIT Statement

the old record’s SALARY_AMOUNT column using the specified percentage
increase (:PERC).

• Uses the COMMIT statement to make the changes to the database
permanent.

The first two SQL statements in the example are the WHENEVER SQLERROR
and WHENEVER SQLWARNING statements. If an error or warning occurs,
control transfers to another paragraph that contains a ROLLBACK statement.
Therefore, this set of operations is never just partially completed.

.

.

.
PROCEDURE DIVISION.
START-UP.

DISPLAY "Enter employee’s ID number: "
WITH NO ADVANCING.

ACCEPT ID.
DISPLAY "Percentage increase: "
WITH NO ADVANCING.

ACCEPT PERC.

EXEC SQL
WHENEVER SQLERROR GOTO ERROR-PAR END_EXEC.

EXEC SQL
WHENEVER SQLWARNING GOTO ERROR-PAR END_EXEC.

EXEC SQL SET TRANSACTION READ WRITE RESERVING
SALARY_HISTORY FOR EXCLUSIVE WRITE

END_EXEC.

EXEC SQL
UPDATE SALARY_HISTORY SH
SET SH.SALARY_END = CURRENT_TIMESTAMP
WHERE SH.EMPLOYEE_ID = :ID
AND SH.SALARY_END IS NULL

END_EXEC.

EXEC SQL
INSERT INTO SALARY_HISTORY

(EMPLOYEE_ID, SALARY_AMOUNT, SALARY_START)
SELECT EMPLOYEE_ID,

(SALARY_AMOUNT * (1 + (:PERC / 100))),
SALARY_END

FROM SALARY_HISTORY
WHERE EMPLOYEE_ID = :ID
AND CAST(SALARY_END as DATE ANSI) = CURRENT_DATE

END_EXEC.

SQL Statements 6–277

COMMIT Statement

EXEC SQL
COMMIT WORK END_EXEC.

Example 2: Using the COMMIT statement with data definition

This example shows a simple database and table definition. The COMMIT
statement makes the table definition permanent.

SQL> CREATE DATABASE ALIAS INVENTORY;
SQL> --
SQL> CREATE TABLE INVENTORY.PART
cont> (TEST CHAR(10));
SQL> COMMIT;
SQL> SHOW TABLES
User tables in database with alias INVENTORY

PART

Example 3: Using the AND CHAIN argument

The following simple example executes SET TRANSACTION once at the start
of the procedure. Then periodically the transaction is committed and restarted
using the COMMIT AND CHAIN syntax. This simplifies the application since
there is only one definition of the transaction characteristics.

SQL> -- process table in batches
SQL>
SQL> set compound transactions ’internal’;
SQL> set flags ’transaction,trace’;
SQL>
SQL> begin
cont> declare :counter integer = 0;
cont> declare :emp integer;
cont>
cont> set transaction
cont> read write
cont> reserving employees for exclusive write;
cont>
cont> for :emp in 0 to 600
cont> do
cont> begin
cont> declare :id char(5)
cont> default substring (cast (:emp+100000 as varchar(6))
cont> from 2 for 5);
cont> if exists (select * from employees where employee_id = :id)
cont> then
cont> trace ’found: ’, :id;
cont> if :counter > 20
cont> then
cont> commit and chain;
cont> set :counter = 1;
cont> else
cont> set :counter = :counter + 1;

6–278 SQL Statements

COMMIT Statement

cont> end if;
cont> end if;
cont> end;
cont> end for;
cont>
cont> commit;
cont> end;
~T Compile transaction (1) on db: 1
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
~T Start_transaction (1) on db: 1, db count=1
~T Rollback_transaction on db: 1
~T Compile transaction (3) on db: 1
~T Transaction Parameter Block: (len=14)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
0002 (00002) TPB$K_LOCK_WRITE (reserving) "EMPLOYEES" TPB$K_EXCLUSIVE
~T Start_transaction (3) on db: 1, db count=1
~Xt: found: 00164
~Xt: found: 00165
.
.
.
~Xt: found: 00185
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Restart_transaction (3) on db: 1, db count=1
~Xt: found: 00186
~Xt: found: 00187
.
.
.
~Xt: found: 00435
~Xt: found: 00471
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
SQL>

SQL Statements 6–279

Compound Statement

Compound Statement

Allows you to include more than one SQL statement in an SQL module
procedure or in an embedded SQL program. Only by defining a compound
statement can you put multiple SQL statements in a procedure. Procedures
that contain one or more compound statements are called multistatement
procedures.

In contrast, a simple statement can contain a single SQL statement only.
Procedures that contain a single SQL statement are called simple-statement
procedures. See the Simple Statement for a description of simple-statement
procedures and how you use them in SQL application programming.

A compound statement and a simple statement differ not just in the number of
SQL statements they can contain. A compound statement:

• Can include only a subset of the SQL statements allowed in a simple
statement procedure. (See the compound-use-statement syntax diagram for
a list of these valid statements.)

• Can include control flow statements, much like those you can use in a host
language program. (See the control-statement syntax diagrams for a list of
flow control statements allowed in a compound statement.)

• Can include transaction management statements, such as ROLLBACK and
COMMIT.

• Can include local variables.

• Can control atomicity.

• Can reference only one alias because each compound statement represents
a single Oracle Rdb request.

See the Oracle Rdb Guide to SQL Programming for a conceptual description of
compound statements and their relationship to multistatement procedures.

Environment

You can use a compound statement:

• In interactive SQL, as a way to test syntax and prototype compound
statements for use with programs.

• In embedded SQL, as part of a host language program to be processed with
the SQL precompiler.

6–280 SQL Statements

Compound Statement

• In SQL module language, as part of a multistatement procedure in an SQL
module file to be processed with the SQL module processor.

• In dynamic SQL, to prepare and execute compound statements.

Format
compound-statement =

BEGIN
<beginning-label>: pragma-clauses

variable-declaration

END
compound-use-statement <ending-label>:

pragma-clauses =

pragma-option

PRAGMA (pragma-option)
,

pragma-option =

ATOMIC
NOT ATOMIC
ON ALIAS <alias-name>
with-clause
optimize-clause

optimize-clause =

OPTIMIZE FOR FAST FIRST
TOTAL TIME
SEQUENTIAL ACCESS

USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

AS <query-name>

SQL Statements 6–281

Compound Statement

with-clause =

WITH HOLD
PRESERVE ON COMMIT

ON ROLLBACK
ALL
NONE

variable-declaration =

DECLARE <variable-name>
, CONSTANT

UPDATABLE

data-type
<domain-name> default-clause constraint-clause

constraint-clause =

CHECK (search-condition)
constraint-attributes

default-clause =

DEFAULT date-time-literal
= interval-literal

numeric-literal
string-literal
: <variable-name>

compound-use-statement =

call-statement ;
commit-statement
control-statement
delete-statement
get-diagnostics-statement
insert-statement
lock-table-statement
rollback-statement
set-transaction-statement
singleton-select-statement
start-transaction-statement
trace-statement
update-statement

6–282 SQL Statements

Compound Statement

control-statement =

simple-case-statement
case-searched-statement
compound-statement
for-statement
for-counted-loop-statement
if-statement
iterate-statement
leave-statement
loop-statement
repeat-statement
return-statement
set-assignment-statement
signal-statement
trace-statement
while-statement

Arguments

ATOMIC
NOT ATOMIC
Controls whether or not SQL statements in the compound statement are
undone when any statement in the compound statement terminates with an
exception. Compound statements are NOT ATOMIC by default.

Most single SQL statements are ATOMIC. Only the control statements are
NOT ATOMIC. For example, an INSERT statement is ATOMIC, and the entire
insert operation either completes or fails as a unit even if it is contained in a
NOT ATOMIC block.

• ATOMIC

In a compound statement defined as ATOMIC, all SQL statements in
a compound statement succeed, or when any of the SQL statements in
the compound statement raises an exception, they all fail as a unit. Any
changes made up to the point of failure are undone. SQL terminates the
compound statement as soon as a statement within it fails. SQL does not
change variable assignments as a result of a statement failure.

All statements within an ATOMIC block must be atomic. If you nest
compound statements and specify ATOMIC, you must specify ATOMIC for
any inner blocks. If you do not, Oracle Rdb returns an error.

• NOT ATOMIC (default)

SQL Statements 6–283

Compound Statement

In a compound statement defined as NOT ATOMIC, all SQL statements
that complete successfully up to the point of a failed statement are not
undone as they would be in an ATOMIC compound statement. Partial
success of the statements in a NOT ATOMIC compound statement
can occur, unlike the all-or-nothing behavior in ATOMIC compound
statements. As with ATOMIC compound statements, NOT ATOMIC
compound statements are terminated when an SQL statement returns
an exception. The partial work of the statement causing a compound
statement to terminate is always undone.

SQL restricts the use of SET TRANSACTION, START TRANSACTION,
COMMIT, and ROLLBACK statements to NOT ATOMIC compound statements
because the nature of an ATOMIC compound statement conflicts with the
properties of these statements. The property of an ATOMIC block is that all
statements succeed, or all statements fail, and this can not be guaranteed if a
transaction is started or ended during the block.

BEGIN
Begins a compound statement. The END keyword marks the end of a
compound statement. The unit consisting of the BEGIN and END keywords
and all statements bounded by them is called a compound statement block or
just a block. The simplest compound statement block can consist of BEGIN,
END, and a terminating semicolon (BEGIN END;).

beginning-label:
Assigns a name to a block. You use the label with the LEAVE or ITERATE
statements to perform a controlled exit from a block or a LOOP statement.
Named compound statements are called labeled compound statements. If a
block has an ending label, you must also supply an identical beginning label. A
label must be unique within the procedure in which the label is contained.

call-statement
Invokes an external or stored procedure. See the CALL Statement for
Compound Statements for a complete description.

case-searched-statement
See the CASE (Searched) Control Statement for a complete description.

commit-statement
Ends a transaction and makes any changes that you made during that
transaction permanent. SQL does not allow a COMMIT statement in an
ATOMIC compound statement. The AND CHAIN clause can also be used to
start a new transaction.

See the COMMIT Statement for a complete description.

6–284 SQL Statements

Compound Statement

compound-statement
Lets you nest compound statements in another compound statement.

compound-use-statement
Identifies the SQL statements allowed in a compound statement block.

CONSTANT
CONSTANT changes the variable into a declared constant that can not
be updated. If you specify CONSTANT, you must also have specified the
DEFAULT clause to ensure the variable has a value. CONSTANT also
indicates that the variable can not be used as the target of an assignment or
be passed as an expression to a procedure’s INOUT or OUT parameter.

control-statement
The set of statements that provide conditional execution, iterative execution,
and cursor-like operations for controlling the execution flow of SQL statements
in a compound statement.

default-clause
You can use any value expression including subqueries, conditional, character,
date/time, and numeric expressions as default values. See Section 2.6 for more
information about value expressions.

The value expressions described in Section 2.6 include DBKEY and aggregate
functions. However, the DEFAULT clause is not a valid location for referencing
a DBKEY or an aggregate function. If you attempt to reference either, you
receive a compile-time error.

delete-statement
Deletes a row from a table or view.

See the DELETE Statement for a complete description.

END
Ends a compound statement block.

ending-label
Assigns a name to a block. If a block has a beginning label, you must use the
same name for the ending label.

for-counted-loop-statement
See the FOR (Counted) Control Statement for a complete description.

for-statement
See the FOR Control Statement for a complete description.

SQL Statements 6–285

Compound Statement

get-diagnostics-statement
Retrieves diagnostic information for the previously executed statement.

See the GET DIAGNOSTICS Statement for a complete description.

if-statement
See the IF Control Statement for a complete description.

insert-statement
Adds a new row, or a number of rows, to a table or view. For compound
statements, SQL restricts the INSERT statement to database insert operations
in a single database.

See the INSERT Statement for a complete description.

leave-statement
See the LEAVE Control Statement for a complete description.

lock-table-statement
See the LOCK TABLE Statement for a complete description.

loop-statement
See the LOOP Control Statement for a complete description.

ON ALIAS alias
Specifies an alias allowing your program or interactive SQL statements to refer
to more than one database. Use the same alias as specified in the ATTACH
statement.

SQL> ATTACH ’ALIAS db1 FILENAME mf_personnel’;
SQL> ATTACH ’ALIAS db2 FILENAME d1’;
SQL> DECLARE :x CHAR(5);
SQL> BEGIN ON ALIAS db1
cont> SELECT EMPLOYEE_ID INTO :x FROM db1.EMPLOYEES
cont> WHERE EMPLOYEE_ID=’00164’;
cont> END;
SQL> PRINT :x;
X
00164

OPTIMIZE AS request
Assigns a name to the compound statement.

OPTIMIZE USING outline-name
Names the query outline to be used with the compound statement, even if the
outline ID for the query and for the outline are different.

6–286 SQL Statements

Compound Statement

OPTIMIZE WITH
Selects one of three optimization controls: DEFAULT (as used by previous
versions of Oracle Rdb), AGGRESSIVE (assumes smaller numbers of rows
will be selected), and SAMPLED (which uses literals in the query to perform
preliminary estimation on indices).

PRAGMA pragma-options
These options may only be specified on the outermost BEGIN statement. The
exception is ATOMIC and NOT ATOMIC.

repeat-statement
See the REPEAT Control Statement for a complete description.

return-statement
Returns the result for stored functions. See the RETURN Control Statement
for a complete description.

rollback-statement
Ends a transaction and undoes all changes you made since that transaction
began. SQL does not allow a ROLLBACK statement in an ATOMIC
compound statement. The AND CHAIN clause can also be used to start a
new transaction.

See the ROLLBACK Statement for a complete description.

set-assignment-statement
See the SET Control Statement for a complete description.

set-transaction-statement
Starts a transaction and specifies its characteristics.

See the SET TRANSACTION Statement for a complete description.

signal-statement
See the SIGNAL Control Statement for a complete description.

simple-case-statement
See the CASE (Simple) Control Statement for a complete description.

singleton-select-statement
Specifies a one-row result table.

See the SELECT Statement: Singleton Select for a complete description.

start-transaction-statement
See the START TRANSACTION Statement for a complete description.

SQL Statements 6–287

Compound Statement

trace-statement
Writes values to the trace log file. See the TRACE Control Statement for a
complete description.

UPDATABLE
UPDATABLE is the default (versus CONSTANT) and allows the variable to
be modified. An update of a variable can occur due to a SET assignment, an
INTO assignment (as part of an INSERT, UPDATE, or SELECT statement), or
as a procedure’s OUT or INOUT parameter.

update-statement
Modifies a row in a table or view.

See the UPDATE Statement for a complete description.

variable-declaration
Declares local variables for a compound statement. SQL creates variables
when it executes a compound statement and deletes them when execution of
the compound statement ends.

while-statement
See the WHILE Control Statement for a complete description.

WITH HOLD
Can be applied to a table cursor so that it remains open across COMMIT and
ROLLBACK actions. See the Usage Notes for more information.

Usage Notes

• In a compound statement, variable declarations must appear before any
executable SQL statement. For example, SQL returns an error if you put
the SET statement before any DECLARE statement.

SQL> BEGIN
cont> DECLARE :mgrid CHAR(5);
cont> DECLARE :cur_mgrid CHAR(5);
cont> SET :mgrid = ’00167’;
cont> DECLARE :state_code CHAR(2);
%SQL-I-DEPR_FEATURE, Deprecated Feature: Keyword DECLARE used as an
identifier
DECLARE :state_code CHAR(2);

^
%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, FOR, LOOP, BEGIN, WHILE,
%SQL-F-LOOK_FOR_FIN, found STATE_CODE instead

6–288 SQL Statements

Compound Statement

• In interactive SQL and precompiled SQL, you cannot use a label on
the outermost compound statement. You can use labels on compound
statements nested in another compound statement.

In SQL module language, you can put a label on the outermost compound
statement.

• Use the BEGIN ON ALIAS syntax to specify the database to which a
compound statement refers. If you do not use BEGIN ON ALIAS, the
following error is returned:

SQL> ATTACH ’ALIAS db1 FILENAME mf_personnel’;
SQL> ATTACH ’ALIAS db2 FILENAME d1’;
SQL> DECLARE :x CHAR(5);
SQL> BEGIN
cont> SELECT EMPLOYEE_ID INTO :x FROM db1.EMPLOYEES
cont> WHERE EMPLOYEE_ID=’00164’;
cont> END;
%SQL-F-ONEDBINMOD, Only one alias is legal in this module

• A compound statement can reference only one alias because each compound
statement represents a single Oracle Rdb request.

• You cannot refer to more than one database in a multistatement procedure.

• The compound-use statements are executed sequentially.

If any statement raises an exception, all database work is undone. If
the failed statement is inside an ATOMIC block, all work of this block
is undone. The procedure that contains the statement ends with the
exception reported through the SQLCODE, SQLSTATE, or the SQLCA
parameter.

• A new timestamp is calculated for every statement in a NOT ATOMIC
compound statement. Alternatively, a new timestamp is calculated only
once for an ATOMIC compound statement. Consider using ATOMIC
statements for complex multistatement procedures to reduce CPU
overhead.

• The LIST OF BYTE VARYING data type is not permitted as the explicit
type of a variable, or of a domain used for the variable.

• The default value is assigned before any other executable statements in the
compound block. The default value cannot reference the variables being
declared by the current DECLARE clause. The default value can reference
variables in outer blocks or other complex value expressions.

• If the DEFAULT clause is not present, the declared variables initial value
is undefined.

SQL Statements 6–289

Compound Statement

• If a list of variables are declared together, the DEFAULT is applied to each
variable. This is shown in the following example which displays the default
values using the TRACE statement:

SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont> DECLARE :x, :y INTEGER DEFAULT -1;
cont> TRACE :x, :y;
cont> END;
~Xt: -1 -1

• The default clause is reassigned whenever the variable declaration re-
enters scope. For example, if the DECLARE clause appears in a loop, the
variable is re-initialized on each iteration of the loop.

• A FOR cursor loop executes the DO . . . END FOR body of the loop for
each row fetched from the row set. Applications cannot use RETURNED_
SQLCODE or RETURNED_SQLSTATE to determine if the FOR loop
reached the end of the row set without processing any rows. Applications
should use the GET DIAGNOSTICS ROW_COUNT statement after the
END FOR clause to test for zero or more rows processed.

• If an outline exists, Oracle Rdb will use the outline specified in the
OPTIMIZE USING clause unless one or more of the directives in the
outline cannot be followed. SQL issues an error message if the existing
outline cannot be used.

• If you specify the name of an outline that does not exist, Oracle Rdb
compiles the query, ignores the outline name, and searches for an existing
outline with the same outline ID as the query. If an outline with the same
outline ID is found, Oracle Rdb attempts to execute the query using the
directives in that outline. If an outline with the same outline ID is not
found, the optimizer selects a strategy for the query for execution.

• See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information regarding query outlines.

• Variables declared within a compound statement (BEGIN . . . END) can
include a CHECK constraint to prevent out of range assignments to
variables.

• The constraint-clause is applied to all variables listed in DECLARE. The
keyword VALUE can be used as a placeholder for the variable name with
SQL correctly applying the constraint to all variables.

• Only the NOT DEFERRABLE and INITIALLY IMMEDIATE syntax is
supported for variable constraints. This is also the default if no constraint-
attributes are specified.

6–290 SQL Statements

Compound Statement

• A runtime error is signalled if the constraint is violated. This error will
include the name of the variable.

• When a DEFAULT is not used in the declare statement the contents of
the variable are undefined. Therefore, any variable that uses a CHECK
constraint must also provide a DEFAULT clause to ensure that the
variable’s value is consistent.

• When the WITH HOLD clause is applied to the outer BEGIN of a
compound statement it forces WITH HOLD cursor semantics for all
FOR cursor loops within this compound statement.

• The WITH HOLD semantic allows, for instance, applications that processes
large numbers of rows to commit frequently to reduce lock contention and
size of recovery journals.

Note

These semantics are not inherited by procedures called by the CALL
statement, nor by SQL functions executed within statements in the
compound statement.

• The clause WITH HOLD PRESERVE NONE is a way to specify the default
action, which is to always close cursors upon commit.

• The default action, or when WITH HOLD PRESERVE NONE is specified,
is to forbid the use of the COMMIT, ROLLBACK, SET TRANSACTION
and START TRANSACTION statements within a FOR cursor loop.

If WITH HOLD PRESERVE ON COMMIT, WITH HOLD PRESERVE
ON ROLLBACK or WITH HOLD PRESERVE ALL are used then these
statements will be allowed within a FOR cursor loop.

Examples

Example 1: Using a compound statement to update rows

The following compound statement uses variables to update rows in the JOBS
table. It uses the SET asssignment control statement to assign a value to the
variable MIN_SAL.

SQL Statements 6–291

Compound Statement

SQL> BEGIN
cont> -- Declare the variable.
cont> DECLARE :MIN_SAL INTEGER(2);
cont> -- Set the value of the variable.
cont> SET :MIN_SAL = (SELECT MIN(MINIMUM_SALARY) FROM JOBS) * 1.08;
cont> -- Update the rows in the JOBS table.
cont> UPDATE JOBS
cont> SET MINIMUM_SALARY = :MIN_SAL
cont> WHERE MINIMUM_SALARY < (:MIN_SAL * 1.08);
cont> END;

Example 2: Using the DEFAULT clause

The following example shows several variable declarations using a variety of
value expressions for the DEFAULT clause.

SQL> SET FLAGS ’TRACE’;
SQL>
SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT -1;
cont> TRACE :x;
cont> END;
~Xt: -1
SQL>
SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT NULL;
cont> TRACE COALESCE (:x, ’NULL’);
cont> END;
~Xt: NULL
SQL>
SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT (1+1);
cont> TRACE :x;
cont> END;
~Xt: 2
SQL>
SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT (SELECT COUNT(*) FROM EMPLOYEES);
cont> TRACE :x;
cont> END;
~Xt: 100

Example 3: Specifying a LOOP statement using the DEFAULT clause

The following example shows some simple value expressions. The default
value is applied to :y on each iteration of the loop, not just the first time the
statement is executed.

6–292 SQL Statements

Compound Statement

SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT 0;
cont> WHILE :x < 10
cont> LOOP
cont> BEGIN
cont> DECLARE :y INTEGER DEFAULT 1;
cont> TRACE :x, :y;
cont> SET :x = :x + :y;
cont> SET :y = :y + 1;
cont> END;
cont> END LOOP;
cont> END;
~Xt: 0 1
~Xt: 1 1
~Xt: 2 1
~Xt: 3 1
~Xt: 4 1
~Xt: 5 1
~Xt: 6 1
~Xt: 7 1
~Xt: 8 1
~Xt: 9 1

Example 4: Using the CHECK constraint

This example shows the use of a CHECK constraint to prevent illegal values
being assigned to control variables for a REPEAT loop. The singleton SELECT
will actually return zero to the local variable P which will cause a variable
validation to fail.

SQL> begin
cont> declare :v integer = 0 check (value is not null);
cont> declare :p integer = 1 check (value is not null and value <> 0);
cont>
cont> repeat
cont> select count(*) into :p
cont> from employees
cont> where employee_id = ’00000’;
cont> set :v = :v + :p;
cont> until :v > 1000
cont> end repeat;
cont> end;
%RDB-E-NOT_VALID, validation on field P caused operation to fail

Example 5: Using the WITH HOLD clause

The following example shows the use of the WITH HOLD PRESERVE ON
COMMIT clause in a procedure which purges old data from the AUDIT_
HISTORY table. It commits the transaction every 100 rows (:MAX_UNIT).

SQL Statements 6–293

Compound Statement

SQL> declare transaction read only;
SQL> set flags ’TRACE’;
SQL> set compound transactions ’internal’;
SQL> declare :purge_date date;
SQL> accept :purge_date prompt ’Purge date for AUDIT_HISTORY? ’;
Purge date for AUDIT_HISTORY? 1-jan-1989
SQL>
SQL> begin
cont> pragma (with hold preserve on commit)
cont> declare :max_unit constant integer = 100;
cont> declare :rc integer = :max_unit;
cont>
cont> set transaction read write;
cont>
cont> for :ah as table cursor ah_cursor
cont> for select *
cont> from audit_history
cont> where job_start < :purge_date
cont> do
cont> delete from audit_history
cont> where current of ah_cursor;
cont> if :rc = 0
cont> then
cont> commit and chain;
cont> set :rc = :max_unit;
cont> else
cont> set :rc = :rc - 1;
cont> end if;
cont> end for;
cont> get diagnostics :rc = ROW_COUNT;
cont> commit;
cont> trace ’Processed rows: ’, :rc;
cont> end;
~Xt: Processed rows: 2192

6–294 SQL Statements

CONNECT Statement

CONNECT Statement

Creates a database environment and a connection, and specifies a connection
name for that association.

A connection specifies an association between the set of cursors, intermediate
result tables, and procedures in all modules of an application and the database
environment currently attached.

A database environment is one or more databases that can be attached or
detached as a unit. The connection name designates a particular connection
and database environment. When you execute a procedure, it executes in the
context of a connection.

When you issue a CONNECT statement, SQL creates a new connection from
all the procedures in your application and creates a new environment from all
the databases named in the CONNECT statement. The new environment can
include databases already attached in the default environment.

There are two ways to attach a database to the default environment:

• Use an ATTACH statement to specify a database environment at run time.
All the databases you specify with subsequent ATTACH statements become
part of the default environment.

• Use a DECLARE ALIAS statement to specify a database environment
at compile time in precompiled SQL and SQL module language. All the
databases that you specify using DECLARE ALIAS statements also become
part of the default environment.

A CONNECT statement creates a new connection with a new set of
attachments, and does an implicit SET CONNECT to that new connection.
Although a CONNECT statement does not create a transaction, each
connection has its own implicit transaction context. You can issue two different
CONNECT statements that attach to the same database, but each attach is
unique.

Once you have specified a connection name in a CONNECT statement, you
can refer to that connection name in subsequent SET CONNECT statements.
You can use a SET CONNECT statement to specify a new connection for an
application to run against without having to detach and recompile queries. See
the SET CONNECT Statement for more information.

The DISCONNECT statement detaches from databases, ends the transactions
in the connections that you specify, and rolls back all the changes you made
since those transactions began.

SQL Statements 6–295

CONNECT Statement

Environment

You can use the CONNECT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CONNECT

TO <connect-string-literal>
<connect-parameter>
<connect-parameter-marker>

AS runtime-options (1)

user-authentication

CATALOG runtime-options (2)
SCHEMA runtime-options (3)

,

NAMES runtime-options (4)

user-authentication =

USER ’<username>’
parameter USING ’<password>’

parameter

connect-string-literal =

’ connect-expression ’

6–296 SQL Statements

CONNECT Statement

connect-expression =

DEFAULT
db-specification

,

db-specification =

ALIAS <alias>

FILENAME ’attach-spec’
PATHNAME <path-name> literal-user-auth

ATTACH attach-expression
,

literal-user-auth =

USER ’<username>’
USING ’<password>’

attach-expression =

FILENAME ’<attach-spec>’
ALIAS <alias> PATHNAME <path-name>

literal-user-auth

database-options
attach-options

attach-spec =

<file-spec>
<node-spec>

SQL Statements 6–297

CONNECT Statement

node-spec =

<nodename>
<access-string>
::

access-string =

" <user-name> <password> "
" <VMS-proxy-user-name> "

database-options =

ELN
NSDS
rdb-options
VIDA
VIDA V1
VIDA V2
VIDA V2N
NOVIDA
DBIV1
DBIV31
DBIV70

rdb-options =

RDBVMS
RDB030
RDB031
RDB040
RDB041
RDB042
RDB050
RDB051
RDB060
RDB061
RDB070
RDB071

6–298 SQL Statements

CONNECT Statement

attach-options =

DBKEY SCOPE IS ATTACH
ROWID TRANSACTION
MULTISCHEMA IS ON

OFF
PRESTARTED TRANSACTIONS ARE ON

OFF
RESTRICTED ACCESS

NO
DISPLAY CHARACTER SET <character-set-name>

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

ALIAS alias
Specifies a name for a particular attach to a database. Specifying an alias in
the connect expression lets your program or interactive SQL statements refer
to more than one database.

You do not have to specify an alias in the CONNECT statement if you are
referring only to the default database.

If you specify an alias, but do not specify a FILENAME or PATHNAME, SQL
uses the path name or file name in the DECLARE ALIAS statement for that
database by default. The alias must be part of the default environment.

AS runtime-options (1)
Specifies an identifier for the association between the group of databases
being attached (the environment) and the database and request handles that
reference them (the connection).

The connection name must be unique within your application. Use a literal
string enclosed within single quotation marks, for example:

CONNECT TO ’ALIAS CORP FILENAME corporate_data’ AS ’JULY_CORP_DATA’

SQL Statements 6–299

CONNECT Statement

If you do not specify a connection name, SQL generates a unique connection
name. For example:

SQL> CONNECT TO
cont> ’ATTACH FILENAME mf_personnel’;
SQL> SHOW CONNECTIONS

RDB$DEFAULT_CONNECTION
-> SQL$CONN_00000000

ATTACH attach-expression
Specifies an alias that is not part of the default environment. See the ATTACH
Statement for details about the FILENAME ’attach-spec’, PATHNAME
path-name, database-options, and attach-options.

CATALOG runtime-options (2)
Specifies the default catalog for dynamic statements in the connection.

You can supply a parameter marker from dynamic SQL, a host language
variable from a precompiled SQL program, a parameter from an SQL module
language module, or a string literal. The argument that you supply must be a
character string that contains a connect expression that is interpreted at run
time.

db-specification
Specifies one or more valid aliases. An alias, which identifies a particular
database, is valid only if that database is either declared in any of the modules
in the current application or attached with the ATTACH statement. You can
issue an ATTACH statement as part of the db-specification.

FILENAME ’attach-spec’
A quoted string containing full or partial information needed to access a
database.

When you use the FILENAME argument, any changes you make to database
definitions are entered only to the database system file, not to the repository.
If you specify FILENAME, your application attaches to the database with that
file name at run time.

For information regarding node-spec and file-spec, see Section 2.2.8.1.

’string-literal’
parameter-marker
host-variable
Specifies a value, possibly specified at runtime, that is used by various
CONNECT clauses.

6–300 SQL Statements

CONNECT Statement

literal-user-auth
Specifies the user name and password for the specified alias in the connection.
This clause enables access to databases, particularly remote databases.

This literal lets you explicitly provide user name and password information for
each alias in the CONNECT statement. For more information about when to
use this clause, see the ATTACH Statement.

NAMES runtime-options (4)
Specifies a character set name that is used as the default, identifier, and
literal character sets for the session of the current connection. The value of
runtime-options must be one of the character sets listed in Section 2.1 .

You can supply a parameter marker from dynamic SQL, a host language
variable from a precompiled SQL program, a parameter from an SQL module
language module, or a string literal. The argument that you supply must be a
character string that contains a connect expression that is interpreted at run
time.

PATHNAME path-name
A full or relative repository path name that specifies the source of the schema
definitions. When you use the PATHNAME argument, any changes you make
to schema definitions are entered in the repository and the database system
file. Oracle Rdb recommends using the PATHNAME argument if you have the
repository on your system and you plan to use any data definition statements.

The path name that you specify overrides the path name associated with the
alias at run time.

If you specify PATHNAME at run time, your application attaches to the
database file name extracted from the repository.

SCHEMA runtime-options (3)
Specifies the schema for dynamic statements in the connection.

You can supply a parameter marker from dynamic SQL, a host language
variable from a precompiled SQL program, a parameter from an SQL module
language module, or a string literal. The argument that you supply must be a
character string that contains a connect expression that is interpreted at run
time.

TO connect-string-literal
TO connect-parameter

SQL Statements 6–301

CONNECT Statement

TO connect-parameter-marker
Specifies the database environment. You can supply a parameter marker from
dynamic SQL, a host language variable from a precompiled SQL program,
a parameter from an SQL module language module, or a string literal. The
argument that you supply must be a character string that contains a connect
expression that is interpreted at run time.

USER ’username’
A character string literal that specifies the operating system user name that
the database system uses for privilege checking.

USING ’password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

user-authentication
Specifies the user name and password to enable access to databases,
particularly remote databases.

This clause lets you explicitly provide user name and password information
in the CONNECT statement. If you do not specify user name and password
information in the ALIAS clause or the ATTACH clause, SQL uses the user
name and password specified in this clause as the default for each alias
specified.

For more information about when to use this clause, see the ATTACH
Statement.

Usage Notes

• If you specify a list of aliases, SQL uses this as the run-time parameters
for the database with the matching alias.

• When you issue the CONNECT statement, the default environment is
determined by the global and local database of the module containing the
CONNECT statement. If a database is declared as LOCAL, the module
has its own view of the database environment. When the application
calls procedures in modules with local aliases, the database environment
changes. If you name the same local alias in two different modules, SQL
considers this two different databases.

6–302 SQL Statements

CONNECT Statement

If a database is declared as GLOBAL, SQL shares the database between
modules. If you declare all aliases as GLOBAL, the default connection does
not change. If you name an alias declared as GLOBAL in two different
modules, SQL shares the database between modules.

• You must declare a database as GLOBAL to reference the database name
in CONNECT statements that are in different modules from the DECLARE
statement for the database.

• To enable connections, use the CONNECT qualifier on the module
language command line, or the SQLOPTIONS=(CONNECT) qualifier
on the precompiler command line. When you enable connections, dynamic
SQL statements can access all global databases, and the CONNECT
statement can connect to any of the global databases.

• If your application calls a procedure that has no currently active
connection, SQL uses the default environment. The default environment at
that point is formed by all databases declared using the DECLARE ALIAS
statement in that module. Databases in other modules are attached when
procedures in that module are executed (assuming that no transaction is
active).

• The DISCONNECT statement ends active transactions and undoes all
changes to the databases during that attach. To incorporate changes,
you must issue a COMMIT statement before issuing a DISCONNECT
statement.

• You can use the SET CONNECT statement to select a connection from the
available connections.

• You can use SQL connections and explicit calls to DECdtm system
services to control when you attach and detach from specific databases.
By explicitly calling DECdtm system services and associating each
database with an SQL connection, you can detach from one database
while remaining attached to other databases. For more information, see
the Oracle Rdb7 Guide to Distributed Transactions.

• For DISPLAY CHARACTER SET, the specified character set must contain
ASCII characters. See Section 2.1.5 for a list of allowable character sets.
The option can be a literal, a parameter, or a parameter marker.

• The character set also specifies the character set for the SQLNAME field in
SQLDA and SQLDA2 for statements without an explicit database context.

SQL Statements 6–303

CONNECT Statement

• If the database default character set is not DEC_MCS, the PATHNAME
specifier cannot be used due to a current limitation of the CDD/Repository,
where object names must only contain DEC_MCS characters. SQL flags
this as an error.

Examples

Example 1: Creating a default connection and one other connection

The following example shows how a user attaches to one database with two
different connections: the default connection and the named connection TEST.

SQL> attach ’alias MIA1 filename MIA_CHAR_SET’;
SQL> connect to ’alias MIA1 filename MIA_CHAR_SET’ as ’TEST’;
SQL> show connections;

RDB$DEFAULT_CONNECTION
-> TEST
SQL> show connections TEST;
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

Example 2: Creating a default connection and two other connections

The following example attaches to three databases: personnel_northwest,
personnel_northeast, and personnel_southeast. (By not specifying an alias for
personnel_northwest, it is assigned the default alias.) Several connections are
established, including EAST_COAST, which includes both personnel_northeast
and personnel_southeast.

6–304 SQL Statements

CONNECT Statement

Use the SHOW DATABASE statement to see the changes to the database.

SQL> --
SQL> -- Attach to the personnel_northwest and personnel_northeast databases.
SQL> -- Personnel_northwest has the default alias, so personnel_northeast
SQL> -- requires an alias.
SQL> -- All of the attached databases comprise the default connection.
SQL> --
SQL> ATTACH ’FILENAME personnel_northwest’;
SQL> ATTACH ’ALIAS NORTHEAST FILENAME personnel_northeast’;
SQL> --
SQL> -- Add the personnel_southeast database.
SQL> --
SQL> ATTACH ’ALIAS SOUTHEAST FILENAME personnel_southeast’;
SQL> --
SQL> -- Connect to personnel_southeast. CONNECT does an
SQL> -- implicit SET CONNECT to the newly created connection.
SQL> --
SQL> CONNECT TO ’ALIAS SOUTHEAST FILENAME personnel_southeast’
cont> AS ’SOUTHEAST_CONNECTION’;
SQL> --
SQL> -- Connect to both personnel_southeast and personnel_northeast as
SQL> -- EAST_COAST connection. SQL replaces the current connection to
SQL> -- the personnel_southeast database with the EAST_COAST connection
SQL> -- when you issue the CONNECT statement. You now have two different
SQL> -- connections that include personnel_southeast.
SQL> --
SQL> CONNECT TO ’ALIAS NORTHEAST FILENAME personnel_northeast,
cont> ALIAS SOUTHEAST FILENAME personnel_southeast’
cont> AS ’EAST_COAST’;
SQL> --
SQL> -- The DEFAULT connection still includes all of the attached databases.
SQL> --
SQL> SET CONNECT DEFAULT;
SQL> --
SQL> -- DISCONNECT releases the connection name EAST_COAST, but
SQL> -- does not detach from the EAST_COAST databases because
SQL> -- they are also part of the default connection.
SQL> --
SQL> DISCONNECT ’EAST_COAST’;
SQL> --
SQL> SET CONNECT ’EAST_COAST’;
%SQL-F-NOSUCHCON, There is not an active connection by that name

SQL Statements 6–305

CONNECT Statement

SQL> --
SQL> -- If you disconnect from the default connection, and have no other
SQL> -- current connections, you are longer be attached to any databases.
SQL> --
SQL> DISCONNECT DEFAULT;
SQL> SHOW DATABASES;
%SQL-F-ERRATTDEF, Could not use database file specified by SQL$DATABASE
-RDB-E-BAD_DB_FORMAT, SQL$DATABASE does not reference a database known to Rdb
-RMS-E-FNF, file not found

6–306 SQL Statements

CREATE Statements

CREATE Statements

Creates the database object.

Usage Notes

The following notes apply to all CREATE statements except CREATE
DATABASE.

• You cannot execute the CREATE statement when any of the LIST,
DEFAULT or RDB$SYSTEM storage areas are set to read-only. You must
first set these storage areas to read/write. Note that in some databases
RDB$SYSTEM will also be the default and list storage area.

• You must execute the CREATE statement in a read/write transaction. If
you issue this statement when there is no active transaction, SQL starts
a transaction with characteristics specified in the most recent DECLARE
TRANSACTION statement.

• The CREATE statement fails when both of the following are true:

The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

The database was attached using the FILENAME argument.

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates is not being maintained

SQL Statements 6–307

CREATE CACHE Clause

CREATE CACHE Clause

Note

You cannot issue CREATE CACHE as an independent statement. It
is a clause allowed only as part of a CREATE DATABASE or IMPORT
statement.

You can also create a row cache using the ADD CACHE clause of the
ALTER DATABASE statement.

Creates a row cache that allows frequently referenced rows to remain in
memory even when the associated page has been transferred back to disk.
This saves in memory usage because only the more recently referenced rows
are cached versus caching the entire buffer.

See the ALTER DATABASE Statement and the CREATE DATABASE
Statement for more information regarding the row cache areas.

Environment

You can use the CREATE CACHE clause only within a CREATE DATABASE
or IMPORT statement. You can use the ADD CACHE clause only within the
ALTER DATABASE statement.

Format

CREATE CACHE <row-cache-name>
row-cache-params1
row-cache-params2

add-row-cache-clause =

ADD CACHE <row-cache-name>
row-cache-params1
row-cache-params2

6–308 SQL Statements

CREATE CACHE Clause

row-cache-params1 =

ALLOCATION IS <n>
EXTENT IS <n> BLOCK

BLOCKS
CACHE SIZE IS <n> ROW

ROWS
CHECKPOINT UPDATED ROWS TO BACKING FILE

DATABASE
ALL ROWS TO BACKING FILE

LARGE MEMORY IS ENABLED
ROW REPLACEMENT IS DISABLED
LOCATION IS <directory-spec>
NO LOCATION

row-cache-params2 =

NUMBER OF RESERVED ROWS IS <n>
SWEEP

ROW LENGTH IS <n>
BYTE
BYTES

ROW SNAPSHOT IS ENABLED rs-opt
DISABLED

SHARED MEMORY IS SYSTEM
PROCESS

RESIDENT

rs-opt =

(CACHE SIZE IS <n> ROWS)

Arguments

ALLOCATION IS n BLOCK
ALLOCATION IS n BLOCKS
Specifies the initial allocation of the row cache file (.rdc) to which cached rows
are written.

If the ALLOCATION clause is not specified, the default allocation in blocks is
approximately 40 percent of the CACHE SIZE for this cache.

This clause is ignored if the row cache is defined to checkpoint to the database.

SQL Statements 6–309

CREATE CACHE Clause

CACHE row-cache-name
Creates a row cache.

CACHE SIZE IS n ROW
CACHE SIZE IS n ROWS
Specifies the number of rows allocated to the row cache. As the row cache fills,
rows more recently referenced are retained in the row cache while those not
referenced recently are discarded. Adjusting the allocation of the row cache
helps to retain important rows in memory. If not specified, the default is 1000
rows.

CHECKPOINT ALL ROWS TO BACKING FILE
CHECKPOINT UPDATED ROWS TO BACKING FILE
CHECKPOINT UPDATED ROWS TO DATABASE
Specifies the source records and target for checkpoint operations for the
row cache. If ALL ROWS is specified, then the records written during each
checkpoint operation are both the modified and the unmodified rows in the row
cache. If UPDATED ROWS is specified, then just the modified rows in the row
cache are checkpointed each time.

If the target of the checkpoint operation is BACKING FILE, then the row cache
server (RCS) process writes the row cache entries to the backing (.rdc) files.
The row cache LOCATION, ALLOCATION, and EXTENT clauses are used
to create the backing files. Upon recovery from a node failure, the database
recovery process is able to repopulate the row caches in memory from the rows
found in the backing files.

If the target is DATABASE, then the updated rows (only UPDATED ROWS
is allowed) are written back to the database. The row cache LOCATION,
ALLOCATION, and EXTENT clauses are ignored. Upon recovery from a node
failure, the database recovery process has no data on the contents of the row
cache. Therefore, it does not repopulate the row caches in memory.

This CHECKPOINT clause overrides the database-level CHECKPOINT clause.

EXTENT IS n BLOCK
EXTENT IS n BLOCKS
Specifies the file extent size for the row cache file (.rdc).

If the EXTENT clause is not specified, the default number of blocks is CACHE
SIZE * 127 for this cache.

This clause is ignored if the row cache is defined to checkpoint to the database.

6–310 SQL Statements

CREATE CACHE Clause

LOCATION IS directory-spec
Specifies the name of the directory to which row cache information is written.
The database system generates a file name (row-cache-name.rdc) automatically
for each row cache at checkpoint time. Specify a device name and directory
name only, enclosed within single quotation marks. By default, the location is
the directory of the database root file. These .rdc files are permanent database
files.

This LOCATION clause overrides a previously specified location at the
database level.

This clause is ignored if the row cache is defined to checkpoint to the database.

NO LOCATION
Removes the location previously specified in a LOCATION IS clause for the
row cache. If you specify NO LOCATION, the row cache location becomes the
directory of the database root file.

This clause is ignored if the row cache is defined to checkpoint to the database.

NUMBER OF RESERVED ROWS IS n
Specifies the maximum number of cache rows that each user can reserve for
insertion into the cache. Processes reserve, or allocate, entries in a cache to
be used when inserting rows into the cache. To improve efficiency, multiple
entries are reserved at one once. Once a user’s reserved list becomes depleted,
Oracle Rdb attempts to reserve another group of entries. The default is 20
rows.

This value is also used when searching for available slots in a row cache. The
entire row cache is not searched on the initial pass. This value specifies the
maximum number of rows that are searched for a free slot. If at least one free
slot is found, the insert operation can proceed. If no free slots are found in this
initial search, Oracle Rdb continues searching through the cache until it finds
a free slot.

NUMBER OF SWEEP ROWS IS n
Specifies the number of modified rows that will be written from the row cache
back to the database by the row cache server (RCS) process during a sweep
operation. When the RCS is notified that a cache is "full" of modified data,
the RCS starts a sweep to make space available in the cache for subsequent
transactions to be able to insert rows into the cache. Oracle Corporation
recommends that you initially specify the number of sweep rows to be
approximately 5 percent of the total number of rows in the cache. Then
monitor performance and adjust the number of sweep rows, if necessary.

SQL Statements 6–311

CREATE CACHE Clause

Allowable values must be in the range 2 through 524288. If not specified, the
default is 3,000 rows.

ROW LENGTH IS n BYTES
Specifies the length of each row allocated to the row cache. Rows are not
cached if they are too large for the row cache. area. The ROW LENGTH is an
aligned longword rounded up to the next multiple of 4 bytes.

The maximum row length in a row cache is 65535 bytes.

When the name of the cache matches the name of an existing logical area,
ADD CACHE will calculate ROW LENGTH from the size of the table row,
or the size of the index node (for SORTED RANKED, or UNIQUE SORTED
indices). This cache is known as a logical area cache.

ROW REPLACEMENT IS ENABLED
ROW REPLACEMENT IS DISABLED
Specifies whether or not Oracle Rdb replaces rows in the cache. When ROW
REPLACEMENT IS ENABLED, rows are replaced when the row cache
becomes full. When ROW REPLACEMENT IS DISABLED, rows are not
replaced when the row cache is full. The type of row replacement policy
depends upon the application requirements for each cache.

The default is ENABLED.

ROW SNAPSHOT IS DISABLED
Disables storing snapshot copies of rows within the cache.

ROW SNAPSHOT IS ENABLED (CACHE SIZE IS n ROWS)
The ROW SNAPSHOT IS ENABLED (CACHE SIZE IS n ROWS) option
enables storage of snapshot copies of rows within the cache and specifies the
number of snapshot ‘‘slots’’ to allocate for the cache.

The default for new caches, and existing caches is to have this feature disabled.

If you do not specify the CACHE SIZE clause for the ROW SNAPSHOT IS
ENABLED option, Oracle Rdb creates a cache that can contain up to 1000
snapshot rows.

SHARED MEMORY IS SYSTEM
SHARED MEMORY IS PROCESS
Determines whether cache global sections are created in system space or
process space. The default is SHARED MEMORY IS PROCESS.

6–312 SQL Statements

CREATE CACHE Clause

When you use cache global sections created in the process space, you and other
users share physical memory and the OpenVMS operating system maps a row
cache to a private address space for each user. As a result, all users are limited
by the free virtual address range and each use a percentage of memory in
overhead. If many users are accessing the database, the overhead can be high.

When many users are accessing the database, consider using the SHARED
MEMORY IS SYSTEM clause. This gives users more physical memory because
they share the system space of memory and there is none of the overhead
associated with the process space of memory.

SHARED MEMORY IS PROCESS RESIDENT
The SHARED MEMORY clause determines whether database root global
sections (including global buffers when enabled) or whether the cache global
sections are created in system space or process space. The RESIDENT option
extends the PROCESS option by making the global section memory resident.

Usage Notes

• If the name of the row cache is the same as any logical area (for example a
table name, index name, RDB$SEGMENTED_STRINGS, RDB$SYSTEM_
RECORD, and so forth), then this is a logical area cache and the named
logical area is cached automatically. Otherwise, a storage area needs to be
associated with the cache.

• Neither ADD nor CREATE CACHE clause assigns the row cache to a
storage area. You must use the CACHE USING clause with the CREATE
STORAGE AREA clause of the CREATE DATABASE statement or the
CACHE USING clause with the ADD STORAGE AREA or ALTER
STORAGE AREA clauses of the ALTER DATABASE statement.

• The product of the CACHE SIZE and the ROW LENGTH settings
determines the amount of memory required for the row cache (some
additional overhead and rounding up to page boundaries is performed by
the database system).

• The row cache is shared by all processes attached to the database on any
one node.

• The following are requirements when using the row caching feature:

– After-image journaling must be enabled

– Fast commit must be enabled

SQL Statements 6–313

CREATE CACHE Clause

– Number of cluster nodes must equal 1 or the system is running
an OpenVMS Galaxy configuration and NUMBER OF CLUSTER
NODE . . . (SINGLE INSTANCE) is enabled.

• Use the SHOW CACHE statement to view information about a cache.

• Each row cache defined in a database can be designated to allow a specified
number of snapshot rows to be stored in the cache. The number of snapshot
rows allowed is specified in addition to the number of live database rows
that can be stored in the cache. Because many versions of a row may be
stored in the snapshot portion of the cache, the number of snapshot rows
and live cache rows are specified independently. As the snapshot portion
of the row cache is effectively an extension of the row cache itself, other
attributes of the cache are shared with the snapshot portion.

• The snapshot portion of a row cache may be larger (may contain more
rows) or smaller (may contain fewer rows) than the live portion of the
row cache. Because application and workload behavior determines the
number of database rows that are modified and the relative transaction
length, it is not reasonable to make specific recommendations for sizing the
snapshot portions caches for all application and database types. However,
it is expected that the ratio of the size of the snapshot cache to the main
cache may be similar to the ratio of the database snapshot storage area
to the live storage area. If an application has long running transactions
and active read-write transactions modifying cached data, many snapshot
copies of the modified data may need to be maintained. This can require
caches with many snapshot rows for those caches with heavy update
activity.

• To enable or disable SHARED MEMORY IS PROCESS RESIDENT or
LARGE MEMORY the process executing the command must be granted
the VMS$MEM_RESIDENT_USER rights identifier. When this feature
is enabled then the process that opens the database must also be granted
the VMS$MEM_RESIDENT_USER identifier. Oracle recommends that the
RMU/OPEN command be used when utilizing this feature.

6–314 SQL Statements

CREATE CACHE Clause

Examples

Example 1: Creating a row cache

This example creates a database, creates a row cache, and assigns the row
cache to a storage area.

SQL> CREATE DATABASE FILENAME test_db
cont> ROW CACHE IS ENABLED
cont> CREATE CACHE test1
cont> CACHE SIZE IS 100 ROWS
cont> CREATE STORAGE AREA area1
cont> CACHE USING test1;
SQL> SHOW CACHE
Cache Objects in database with filename test_db

TEST1
SQL> SHOW CACHE test1

TEST1
Cache Size: 100 rows
Row Length: 256 bytes
Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Reserved Rows: 20
Sweep Rows: 3000
No Sweep Thresholds
Allocation: 100 blocks
Extent: 100 blocks

SQL> SHOW STORAGE AREA area1

AREA1
Access is: Read write
Page Format: Uniform
Page Size: 2 blocks
Area File: SQL_USER1:[DAY.V70]AREA1.RDA;1
Area Allocation: 402 pages
Area Extent Minimum: 99 pages
Area Extent Maximum: 9999 pages
Area Extent Percent: 20 percent
Snapshot File: SQL_USER1:[DAY.V70]AREA1.SNP;1
Snapshot Allocation: 100 pages
Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Extent : Enabled
Locking is Row Level
Using Cache TEST1

No database objects use Storage Area AREA1

SQL Statements 6–315

CREATE CACHE Clause

Example 2: Creating and modifying various caches

! The cache named CUSTOMER_STATUS is created with a row length
of 577 bytes with 88000 cache "slots" for storage of live database rows
and 7000 slots for storage of snapshot copies of rows. This cache is also
configured to be memory- resident.

" The cache named MACHINE_FLOW_IDX_1 is created with a row length of
430 bytes with 5000 cache slots for storage of live database rows and 12000
slots for storage of snapshot copies of rows. This cache is set to disallow
replacement of rows in the cache.

The cache named SALES_CALLS is created with a row length of 160 bytes
with 3000 cache "slots" for storage of live database rows and, using the
default because an explicit count was not specified, 1000 slots for storage of
snapshot copies of rows.

$ The cache named CUSTOMER_ORDER does not specify "ROW
SNAPSHOT IS ENABLED" so no snapshot row copies will be stored in
this cache.

% The cache named "SALES" is modified to disable storage of snapshot rows
in cache.

& The cache named "CLEARING" is modified to enable storage of snapshot
rows in the cache with a snapshot cache size of 12,345 rows.

SQL> ALTER DATABASE FILENAME HDB_DB
! ADD CACHE CUSTOMER_STATUS

ROW LENGTH IS 577 BYTES
CACHE SIZE IS 88000 ROWS
ROW SNAPSHOT IS ENABLED (CACHE SIZE IS 7000 ROWS)
SHARED MEMORY IS PROCESS RESIDENT

" ADD CACHE MACHINE_FLOW_IDX_1
ROW LENGTH IS 430 BYTES
CACHE SIZE IS 5000 ROWS
ROW REPLACEMENT IS DISABLED
ROW SNAPSHOT IS ENABLED (CACHE SIZE IS 12000 ROWS)

ADD CACHE SALES_CALLS
ROW LENGTH IS 160 BYTES
CACHE SIZE IS 3000 ROWS
ROW SNAPSHOT IS ENABLED

$ ADD CACHE CUSTOMER_ORDER
ROW LENGTH IS 760 BYTES
CACHE SIZE IS 9000 ROWS
CHECKPOINT UPDATED ROWS TO DATABASE

% ALTER CACHE SALES
ROW SNAPSHOT IS DISABLED

6–316 SQL Statements

CREATE CACHE Clause

& ALTER CACHE CLEARING
ROW SNAPSHOT IS ENABLED (CACHE SIZE IS 12345 ROWS);

SQL> SHOW CACHE CUSTOMER_STATUS

CUSTOMER_STATUS
Cache Size: 88000 rows
Row Length: 580 bytes
Row Replacement: Enabled
Shared Memory: Process Resident
Large Memory: Disabled
Window Count: 100
Working Set Count: 10
Reserved Rows: 20
Allocation: 100 blocks
Extent: 100 blocks
Snapshot in Cache: Enabled
Snapshot Cache Size: 7000 rows

SQL> SHOW CACHE MACHINE_FLOW_IDX_1

MACHINE_FLOW_IDX_1
Cache Size: 5000 rows
Row Length: 432 bytes
Row Replacement: Disabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Working Set Count: 10
Reserved Rows: 20
Allocation: 100 blocks
Extent: 100 blocks
Snapshot in Cache: Enabled
Snapshot Cache Size: 12000 rows

SQL> SHOW CACHE SALES_CALLS

SALES_CALLS
Cache Size: 3000 rows
Row Length: 160 bytes
Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Working Set Count: 10
Reserved Rows: 20
Allocation: 100 blocks
Extent: 100 blocks
Snapshot in Cache: Enabled
Snapshot Cache Size: 1000 rows

SQL> SHOW CACHE CUSTOMER_ORDER

SQL Statements 6–317

CREATE CACHE Clause

CUSTOMER_ORDER
Cache Size: 9000 rows
Row Length: 760 bytes
Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Working Set Count: 10
Reserved Rows: 20
Allocation: 100 blocks
Extent: 100 blocks
Row cache: checkpoint updated rows to database

6–318 SQL Statements

CREATE CATALOG Statement

CREATE CATALOG Statement

Creates a name for a group of schemas in a multischema database.

Environment

You can use the CREATE CATALOG statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE CATALOG <catalog-name>

create-schema-statement
schema-element

catalog-name =

<name-of-catalog>

" <alias>.<name-of-catalog> "

schema-element =

create-collating-sequence-statement
create-domain-statement
create-index-statement
create-sequence-statement
create-storage-map-statement
create-table-statement
create-trigger-statement
create-view-statement
grant-statement

SQL Statements 6–319

CREATE CATALOG Statement

Arguments

"alias.name-of-catalog"
Specifies an optional name for the attach to the database. Always qualify the
catalog name with an alias if your program or your interactive SQL statements
refer to more than one database. Separate the name of the catalog from the
alias with a period, and enclose the qualified name within double quotation
marks.

catalog-name
The name of the catalog definition you want to create. Use any valid SQL
name that is unique among all catalog names in the database. For more
information on catalog names, see Section 2.2.3.

create-schema-statement
For more information, see the CREATE SCHEMA Statement.

schema-element
One or more CREATE statements or a GRANT statement. For more
information, see the CREATE SCHEMA Statement.

Usage Notes

• You can create a catalog only in a database that has the multischema
attribute. Use the MULTISCHEMA IS ON clause in the CREATE
DATABASE or ALTER DATABASE statement to give a database the
multischema attribute.

• Even if a database has the multischema attribute, you cannot create a
catalog in that database if multischema naming is disabled. Multischema
naming is enabled by default for databases with the multischema attribute,
but you can disable it using the MULTISCHEMA IS OFF clause of the
DECLARE ALIAS or ATTACH statement.

• If you attached to a database using an alias, you must use the same alias
to specify elements in that database in subsequent statements. When you
qualify a catalog name with an alias, you must separate the alias from
the catalog name with a period and enclose the name pair within double
quotation marks.

Before issuing a statement with a qualified catalog name, you must issue
a SET QUOTING RULES statement, specify a QUOTING RULES clause
in a DECLARE MODULE statement embedded in a program, or specify a
QUOTING RULES clause in an SQL module file.

6–320 SQL Statements

CREATE CATALOG Statement

• If you set the ANSI/ISO SQL standard flagger on, the CREATE CATALOG
statement is flagged as nonstandard syntax.

• SQL stores schemas and schema elements in RDB$CATALOG if you do not
change the default catalog.

• The name of the catalog created in CREATE CATALOG is the default
catalog for the whole statement.

Examples

Example 1: Creating a catalog for a database using an alias

This example shows how an interactive user could attach to the sample
database called personnel and create a catalog in that database. (You must use
the personnel sample database created with the multischema attribute for this
example.) Using an alias, the user distinguishes the personnel database from
other databases that may be attached later in the same session.

SQL> ATTACH ’ALIAS CORPORATE FILENAME personnel -
cont> MULTISCHEMA IS ON’;
SQL> --
SQL> -- SQL creates a default catalog called RDB$CATALOG in
SQL> -- each multischema database.
SQL> --
SQL> SHOW CATALOG;
Catalogs in database personnel

"CORPORATE.RDB$CATALOG"
SQL> --
SQL> -- The SET QUOTING RULES ’SQL99’ statement allows the use of
SQL> -- double quotation marks, which SQL requires when you
SQL> -- qualify a catalog name with an alias.
SQL> --
SQL> SET QUOTING RULES ’SQL99’;
SQL> CREATE CATALOG "CORPORATE.MARKETING";
SQL> --
SQL> SHOW CATALOG;
Catalogs in database personnel

"CORPORATE.MARKETING"
"CORPORATE.RDB$CATALOG"

Example 2: Creating a catalog in the database with the default alias

This example shows a CREATE CATALOG clause used in an interactive
CREATE DATABASE statement. In this example, the user creates a database
without specifying an alias. Because the user is not attached to any other
databases, the new database becomes the default alias.

SQL Statements 6–321

CREATE CATALOG Statement

SQL> CREATE DATABASE FILENAME inventory
cont> MULTISCHEMA IS ON
cont> CREATE CATALOG PARTS
cont> CREATE SCHEMA PRINTERS AUTHORIZATION DAVIS
cont> CREATE TABLE LASER EXTERNAL NAME IS DEPT_2_LASER
cont> (SERIAL_NO INT, LOCATION CHAR)
cont> CREATE SCHEMA TERMINALS AUTHORIZATION DAVIS
cont> CREATE TABLE TERM100 EXTERNAL NAME IS DEPT_2_TERM100
cont> (SERIAL_NO INT, LOCATION CHAR);
SQL> SHOW CATALOG;
Catalogs in database with filename inventory

PARTS
RDB$CATALOG

SQL> show schemas;
Schemas in database with filename inventory

PARTS.PRINTERS
PARTS.TERMINALS
RDB$SCHEMA

6–322 SQL Statements

CREATE COLLATING SEQUENCE Statement

CREATE COLLATING SEQUENCE Statement

Identifies a collating sequence that has been defined using the OpenVMS
National Character Set (NCS) utility. Use the CREATE COLLATING
SEQUENCE statement to identify collating sequences other than the database
default collating sequence that you plan to use with certain domains. (The
default collating sequence for a database is established by the COLLATING
SEQUENCE IS clause in the CREATE SCHEMA statement; if you omit that
clause at database definition time, the default sequence is ASCII.)

You must enter a CREATE COLLATING SEQUENCE statement specifying a
collating sequence before you enter the name of that sequence in any of the
following statements:

• CREATE DOMAIN . . . COLLATING SEQUENCE

• DROP COLLATING SEQUENCE

• ALTER DOMAIN . . . COLLATING SEQUENCE

• SHOW COLLATING SEQUENCE

Environment

You can use the CREATE COLLATING SEQUENCE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 6–323

CREATE COLLATING SEQUENCE Statement

Format
CREATE COLLATING SEQUENCE <sequence-name>

STORED NAME IS <stored-name>

COMMENT IS ’<string>’
/

<ncs-name>
FROM <library-name>

Arguments

COMMENT IS ’string’
Adds a comment about the collating sequence. SQL displays the text when it
executes a SHOW COLLATING SEQUENCE statement in interactive SQL.
Enclose the comment within single quotation marks (’) and separate multiple
lines in a comment with a slash mark (/).

FROM library-name
Specifies the name of an NCS library other than the default. The default NCS
library is SYS$LIBRARY:NCS$LIBRARY.

ncs-name
Specifies the name of a collating sequence in the default NCS library,
SYS$LIBRARY:NCS$LIBRARY, or in the NCS library specified by the
library-name argument.

The collating sequence can be either one of the predefined NCS collating
sequences or one that you defined yourself using NCS.

sequence-name
Specifies the name by which the collating sequence named in the ncs-name
argument is known to the schema. The ncs-name and sequence-name
arguments can be the same.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a collating sequence created in
a multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot

6–324 SQL Statements

CREATE COLLATING SEQUENCE Statement

specify a stored name for a collating sequence in a database that does not allow
multiple schemas.

Usage Notes

• The CREATE COLLATING SEQUENCE statement is the first step in
specifying an alternate collating sequence for a domain. After you create
the collating sequence, you can apply it to a particular domain.

• The following list shows abbreviated forms of all the statements that
involve collating sequences.

CREATE DOMAIN . . . COLLATING SEQUENCE sequence-name

CREATE DOMAIN . . . NO COLLATING SEQUENCE

ALTER DOMAIN . . . COLLATING SEQUENCE sequence-name

ALTER DOMAIN . . . NO COLLATING SEQUENCE

DROP COLLATING SEQUENCE sequence-name

CREATE SCHEMA . . . create-collating-sequence-statement

CREATE DATABASE . . . COLLATING SEQUENCE sequence-
name . . .

IMPORT . . . COLLATING SEQUENCE sequence-name . . .

SHOW . . . COLLATING SEQUENCE

• You must execute this statement in a read/write transaction. If you issue
this statement when there is no active transaction, SQL starts a read/write
transaction implicitly.

• Other users are allowed to be attached to the database when you issue the
CREATE COLLATING SEQUENCE statement.

• If you attempt to define a database with the following collating sequence,
a bugcheck dump results with an exception at RDMS$$MCS$NCS_
RECODE_8 + 00000665.

SQL Statements 6–325

CREATE COLLATING SEQUENCE Statement

native_2_upper_lower = cs(
sequence = (%X00,"#"," ","A","a","B","b","C","c","D","d","E",
"e","8","F","f","5"-"4","G","g","H","h","I","i","J","j","K","k",
"L","l","M","m","N","n","9","O","o","1","P","p","Q","q","R","r",
"S","s","7"-"6","T","t","3"-"2","U","u","V","v","W","w","X","x",
"Y","y","Z","z"),
modifications = (%X01-%X1F=%X00,"!"-""""=%X00,"$"-"0"=%X00,":"-"@"=
%X00,
"{"-%XFF=%X00,""="A"));

The modifications portion of the collating sequence results in too many
characters being converted to NULL. Oracle Rdb can handle converting
only about 80 characters to NULL.

A workaround is to modify the MULTINATIONAL2 character set to sort in
the desired order.

• You cannot use any of the following as a collating sequence name:

"MCS"

"ASCII"

" " (all spaces)

Null character (a special character whose character code is 0)

• Because of some special characteristics of the Norwegian collating
sequence, certain restrictions apply when creating a Norwegian collating
sequence in a database. The name of a Norwegian collating sequence in
the NCS library must begin with the character string NORWEGIAN.

Please note that the sequence customarily shipped with OpenVMS is
named NORWEGIAN which meets this restriction. You may wish to alter
the Norwegian sequence slightly or change its name. Oracle recommends
that any variation of the Norwegian collating sequence be given a name
such as NORWEGIAN_1 or NORWEGIANA.

• Use COMMENT ON COLLATING SEQUENCE to change the comment for
the collating sequence.

Example

Example 1: Creating a French collating sequence

The following example creates a collating sequence using the predefined
collating sequence FRENCH. It then shows the defined collating sequence by
using the SHOW COLLATING SEQUENCE statement.

6–326 SQL Statements

CREATE COLLATING SEQUENCE Statement

SQL> CREATE COLLATING SEQUENCE FRENCH FRENCH;
SQL> --
SQL> SHOW COLLATING SEQUENCE
User collating sequences in schema with filename SQL$DATABASE

FRENCH

Example 2: Create a Spanish collating sequence specifying more than one
comment

SQL> CREATE COLLATING SEQUENCE SPANISH_COL
cont> COMMENT IS ’first comment’ / ’second comment’
cont> SPANISH;
SQL> SHOW COLLATING SEQUENCE SPANISH_COL;

SPANISH_COL
Comment: first comment

second comment

SQL Statements 6–327

CREATE DATABASE Statement

CREATE DATABASE Statement

Creates database system files, metadata definitions, and user data that
comprise a database. The CREATE DATABASE statement lets you specify
in a single SQL statement all data and privilege definitions for a new database.
(You can also add definitions to the database later.) For information about
ways to ensure good performance and data consistency, see the Oracle Rdb7
Guide to Database Performance and Tuning.

The many optional elements of the CREATE DATABASE statement make it
very flexible. In its simplest form, the CREATE DATABASE statement creates
database system files, specifies their names, and determines the physical
characteristics of the database. Using the optional elements of the CREATE
DATABASE statement, you can also specify:

• Whether the database created with CREATE DATABASE is multifile
(separate database root file and storage area data file) or single file
(combined database root file and storage area data file). Multifile
databases can have many storage areas for user data, all separate from
the database root file created by the CREATE DATABASE statement.
Multifile databases include CREATE STORAGE AREA clauses in the
CREATE DATABASE statement to create multiple storage area files for
enhanced performance.

The presence or absence of a CREATE STORAGE AREA clause in a
CREATE DATABASE statement determines whether the database is
single file or multifile. To create a multifile database, you must include a
CREATE STORAGE AREA clause in the CREATE DATABASE statement.
To create a single-file database, do not include a CREATE STORAGE
AREA clause in the CREATE DATABASE statement.

• Values for various database root file parameters that override the system
defaults. Database root file (.rdb) parameters describe characteristics
of the database root file. Database root file parameters affect the entire
database, whether it is a single-file or a multifile database.

• Values for storage area parameters that override system defaults. Storage
area parameters describe characteristics of the database storage area files.
In a single-file database, because the storage area data file is combined
with the database root file, storage area parameters apply to a single
storage area and affect the entire database. In a multifile database, storage
area parameters specify defaults for the main storage area, RDB$SYSTEM,
and for any subsequent CREATE STORAGE AREA clauses within the
CREATE DATABASE statement.

6–328 SQL Statements

CREATE DATABASE Statement

• Any number of database elements. Database elements are a CREATE
CATALOG statement, a CREATE STORAGE AREA clause, or a GRANT
statement. The CREATE DATABASE statements that create single-file
databases cannot include a CREATE STORAGE AREA clause because this
is specific to multifile databases. The CREATE DATABASE statements
that create multifile databases must include at least one CREATE
STORAGE AREA clause.

Unlike the same statements outside a CREATE DATABASE statement,
database elements do not use statement terminators. The first statement
terminator that SQL encounters ends the CREATE DATABASE statement.
Later CREATE or GRANT statements are not within the scope of the
CREATE DATABASE statement.

• The database default character set and national character set. For
information regarding identifier character sets, database default character
sets, and national character sets, see Section 2.1.5, Section 2.1.3, and
Section 2.1.7, respectively.

Environment

You can use the CREATE DATABASE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE DATABASE
ALIAS <alias>

root-file-params-1 storage-area-params-1
root-file-params-2 storage-area-params-2
root-file-params-3
root-file-params-4

character-sets database-element

SQL Statements 6–329

CREATE DATABASE Statement

root-file-params-1 =

FILENAME <db-attach-spec>
PATHNAME <path-name> literal-user-auth
attach-options
COLLATING SEQUENCE <collation-name>

COMMENT IS ’<string>’
/

<ncs-name>
FROM <library-name>

NUMBER OF USERS <number-users>
NUMBER OF BUFFERS <number-buffers>
NUMBER OF CLUSTER NODES <number-nodes>

(SINGLE INSTANCE)
MULTIPLE

NUMBER OF RECOVERY BUFFERS <number-buffers>
BUFFER SIZE IS <buffer-blocks> BLOCKS

db-attach-spec =

<file-spec>
<node-spec>

node-spec =

<nodename>
<access-string>
::

access-string =

" <user-name> <password> "
" <VMS-proxy-user-name> "

6–330 SQL Statements

CREATE DATABASE Statement

literal-user-auth =

USER ’<username>’
USING ’<password>’

attach-options =

DBKEY SCOPE IS ATTACH
ROWID TRANSACTION
MULTISCHEMA IS ON

OFF
PRESTARTED TRANSACTIONS ARE ON

OFF
RESTRICTED ACCESS

NO

root-file-params-2 =

global-buffer-params
SNAPSHOT IS ENABLED IMMEDIATE

DEFERRED
DISABLED

DICTIONARY IS REQUIRED
NOT REQUIRED

ADJUSTABLE LOCK GRANULARITY IS ENABLED alg-options
DISABLED

LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS
SEGMENTED STRING STORAGE AREA IS <area-name>
LIST
DEFAULT
PROTECTION IS ANSI

ACLS
RESERVE <n> CACHE SLOTS

JOURNALS
STORAGE AREAS
SEQUENCES

SET TRANSACTION MODES (txn-modes)
ALTER ,

SQL Statements 6–331

CREATE DATABASE Statement

global-buffer-params=

GLOBAL BUFFERS ARE ENABLED
DISABLED

(NUMBER IS <number-glo-buffers>)
USER LIMIT IS <max-glo-buffers>
PAGE TRANSFER VIA DISK

MEMORY
LARGE MEMORY IS ENABLED

DISABLED
,

alg-options =

(COUNT IS <n>)

txn-modes =

READ ONLY
NO READ WRITE

BATCH UPDATE
SHARED
PROTECTED READ
EXCLUSIVE WRITE
ALL
NONE

6–332 SQL Statements

CREATE DATABASE Statement

root-file-params-3 =

CARDINALITY COLLECTION IS ENABLED
CARRY OVER LOCKS ARE DISABLED
GALAXY SUPPORT IS
LOCK PARTITIONING IS
LOGMINER SUPPORT IS
METADATA CHANGES ARE
STATISTICS COLLECTION IS
WORKLOAD COLLECTION IS
SYSTEM INDEX COMPRESSION IS ENABLED

DISABLED
(system-index-options)

,
prestarted-transaction-params
SECURITY CHECKING IS security-checking-options
SYNONYMS ARE ENABLED
NOTIFY IS ENABLED notify-options

DISABLED

system-index-options =

COMPRESSION IS ENABLED
PREFIX CARDINALITY COLLECTION IS DISABLED
PREFIX CARDINALITY COLLECTION IS ENABLED FULL
TYPE IS SORTED

RANKED

prestarted-transaction-params =

PRESTARTED TRANSACTIONS ARE ENABLED
ON (prestart-trans-options)
DISABLED
OFF

prestart-trans-options =

WAIT <n> SECONDS FOR TIMEOUT
WAIT <n> MINUTES FOR TIMEOUT
NO TIMEOUT

SQL Statements 6–333

CREATE DATABASE Statement

security-checking-options =

EXTERNAL
(PERSONA SUPPORT IS ENABLED)

DISABLED
INTERNAL

(ACCOUNT CHECK IS ENABLED)
DISABLED

notify-options =

(ALERT OPERATOR operator-class)
+

root-file-params-4 =

ASYNC BATCH WRITES ARE ENABLED async-bat-wr-options
DISABLED

ASYNC PREFETCH IS
DETECTED

ENABLED async-prefetch-options
DISABLED

ROW CACHE IS ENABLED
DISABLED row-cache-options

INCREMENTAL BACKUP SCAN OPTIMIZATION
NO

MULTITHREAD AREA ADDITIONS multithread-options
RECOVERY JOURNAL (ruj-options)
OPEN IS MANUAL

AUTOMATIC
(WAIT <n> MINUTES FOR CLOSE)

SHARED MEMORY IS SYSTEM
PROCESS

RESIDENT

asynch-bat-wr-options =

(CLEAN BUFFER COUNT IS <buffer-count> BUFFERS)
MAXIMUM BUFFER COUNT IS <buffer-count> BUFFERS

,

6–334 SQL Statements

CREATE DATABASE Statement

async-prefetch-options =

(DEPTH IS <number-buffers> BUFFERS)
THRESHOLD IS <number-buffers> BUFFERS

,

row-cache-options =

(CHECKPOINT ALL ROWS TO BACKING FILE)
TIMED EVERY <n> SECONDS
UPDATED ROWS TO BACKING FILE

DATABASE
LOCATION IS <directory-spec>
NO LOCATION

SWEEP INTERVAL
NUMBER OF SWEEP ROWS IS <n>
SWEEP INTERVAL IS <n> SECONDS

,

multithread-options =

(ALL AREAS)
LIMIT TO <n> AREAS

ruj-options =

LOCATION IS <directory-spec>
NO LOCATION
BUFFER MEMORY IS LOCAL

GLOBAL

storage-area-params-1 =

ALLOCATION IS <number-pages> PAGES
CACHE USING <row-cache-name>
NO ROW CACHE
extent-params
INTERVAL IS <number-data-pages>
LOCKING IS ROW LEVEL

PAGE
PAGE FORMAT IS UNIFORM

MIXED
PAGE SIZE IS <page-blocks> BLOCKS

SQL Statements 6–335

CREATE DATABASE Statement

extent-params =

EXTENT IS ENABLED
DISABLED
<extent-pages> PAGES
(extension-options)

extension-options =

MINIMUM OF <min-pages> PAGES,

MAXIMUM OF <max-pages> PAGES,

PERCENT GROWTH IS <growth>

storage-area-params-2 =

CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
SNAPSHOT FILENAME <file-spec>
THRESHOLDS ARE (<val1>)

,<val2>
,<val3>

character-sets =

DEFAULT CHARACTER SET <support-char-set>
NATIONAL CHARACTER SET <support-char-set>
IDENTIFIER CHARACTER SET <names-char-set>
DISPLAY CHARACTER SET <support-char-set>

6–336 SQL Statements

CREATE DATABASE Statement

database-element =

create-cache-clause
create-catalog-statement
create-collating-sequence-statement
create-domain-statement
create-function-statement
create-index-statement
create-module-statement
create-procedure-statement
create-sequence-statement
create-schema-statement
create-storage-area-clause
create-storage-map-statement
create-table-statement
create-trigger-statement
create-view-statement
grant-statement

Arguments

ADJUSTABLE LOCK GRANULARITY IS ENABLED
ADJUSTABLE LOCK GRANULARITY IS DISABLED
Enables or disables whether or not the database system automatically
maintains as few locks as possible on database resources. The default is
ENABLED and results in fewer locks against the database. However, if
contention for database resources is high, the automatic adjustment of locks
can become a CPU drain. Such databases can trade more restrictive locking
for less CPU usage by disabling adjustable lock granularity.

alias
Specifies the alias for the implicit database declaration executed by the
CREATE DATABASE statement. An alias is a name for a particular attach to
a database that identifies that database in subsequent SQL statements.

Note

If you attach to a database using an alias, you must use that alias
in subsequent statements to qualify the names of elements in that
database.

SQL Statements 6–337

CREATE DATABASE Statement

If you omit the FILENAME argument from the database root file parameters,
SQL also uses the alias as the file name for the database root file and creates
the root file in the current default directory. (SQL generates a syntax error
if you include a disk or directory specification in the alias clause.) You must
specify either the FILENAME or alias argument.

Schema elements in the CREATE DATABASE statement do not need to use
the alias, however, they cannot specify any other alias.

The alias clause is optional. The default alias in interactive SQL and in
precompiled programs is RDB$DBHANDLE. In the SQL module language,
the default is the alias specified in the module header. Using the default alias
(either by specifying it explicitly in the ALIAS clause or omitting the ALIAS
clause) declares the database as the default database. Specifying a default
database means that statements outside the CREATE DATABASE statement
that refer to the default database do not need to use an alias.

If a default database was already declared, and you specify the default alias in
the ALIAS clause (or specify any alias that was already declared), the results
depend on the environment in which you issue the CREATE DATABASE
statement.

• In interactive SQL, you receive a prompt asking if you want to override
the default database declaration. Unless you explicitly override the default
declaration, the CREATE DATABASE statement fails.

SQL> -- Assume a default database has been declared:
SQL> --
SQL> -- Now create a database without an alias.
SQL> -- SQL asks if you want to override the default:
SQL> CREATE DATABASE FILENAME test;
This alias has already been declared.
Would you like to override this declaration (No)? NO
%SQL-F-DEFDBDEC, A database has already been declared with the default
alias

• In embedded SQL or in the SQL module language, specifying an already-
declared alias in the CREATE DATABASE statement generates an error
when you precompile the program or compile the module.

• In dynamic SQL, specifying an already-declared alias overrides the earlier
declaration.

For more information about default databases, see Section 2.2.1.

ALL AREAS
Specifies that all storage areas be created and initialized in parallel.

6–338 SQL Statements

CREATE DATABASE Statement

All storage areas are created asynchronously. If you are creating a large
number of storage areas, you may exceed process quotas, resulting in the
database creation failing.

ALLOCATION IS number-pages
The number of database pages allocated to the database initially. SQL
automatically extends the allocation to handle the loading of data and
subsequent expansion. Pages are allocated in groups of 3. An ALLOCATION of
25 pages would actually provide for 27 pages. The default is 700 pages. If you
are loading a large database, a large allocation helps to prevent fragmented
files.

ALTER TRANSACTION MODES
Enables the modes specified, leaving the previously defined or default modes
enabled. For example, if the only transaction mode you want to disable are
batch updates, use the following statement:

SQL> CREATE DATABASE FILENAME mf_personnel
cont> ALTER TRANSACTION MODES (NO BATCH UPDATE);

If not specified, the default transaction mode is ALL.

ASYNC BATCH WRITES ARE ENABLED
ASYNC BATCH WRITES ARE DISABLED
Specifies whether asynchronous batch-writes are enabled or disabled.

Asynchronous batch-writes allow a process to write batches of modified data
pages to disk asynchronously (the process does not stall while waiting for the
batch-write operation to complete). Asynchronous batch-writes improve the
performance of update applications without the loss of data integrity.

By default, batch-writes are enabled. For more information about when
to use asynchronous batch-writes, see the Oracle Rdb7 Guide to Database
Performance and Tuning.

You can enable asynchronous batch-writes by defining the logical name
RDM$BIND_ABW_ENABLED.

ASYNC PREFETCH IS ENABLED
ASYNC PREFETCH IS DISABLED
Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk by fetching pages before a process actually
requests the pages.

SQL Statements 6–339

CREATE DATABASE Statement

Prefetch can significantly improve performance, but it may cause excessive
resource usage if it is used inappropriately. Asynchronous prefetch is enabled
by default. For more information about asynchronous prefetch, see the Oracle
Rdb7 Guide to Database Performance and Tuning.

You can enable asynchronous prefetch by defining the logical name
RDM$BIND_APF_ENABLED.

BUFFER SIZE IS buffer-blocks BLOCKS
Specifies the number of blocks SQL allocates per buffer. You need to specify
an unsigned integer greater than zero. The default buffer size is 3 times the
PAGE SIZE value (6 blocks for the default PAGE SIZE of 2).

The buffer size is a global parameter and the number of blocks per page (or
buffer) is constrained to less than 64 blocks per page. The page size can vary
by storage area for multifile databases, and the page size should be determined
by the sizes of the records that will be stored in each storage area.

When choosing the number of blocks per buffer, choose a number so that
a round number of pages fits in the buffer. In other words, the buffer size
is wholly divisible by all page sizes for all storage areas in your multifile
database. For example, if you have three storage areas with page sizes of 2,
3, and 4 blocks each respectively, choosing a buffer size of 12 blocks ensures
optimal buffer utilization. In contrast, choosing a buffer size of 8 wastes 2
blocks per buffer for the storage area with a page size of 3 pages. Oracle Rdb
reads as many pages as fit into the buffer; in this instance it reads two 3-block
pages into the buffer, leaving 2 wasted blocks.

CACHE USING row-cache-name
Assigns the named row cache as the default for all storage areas in the
database. All rows stored in an area, whether they consist of table data,
segmented string data, or special rows such as index nodes, are cached.

You must create the row cache before terminating the CREATE DATABASE
statement. For example:

SQL> CREATE DATABASE FILENAME test_db
cont> ROW CACHE IS ENABLED
cont> CACHE USING test1
cont> CREATE CACHE test1
cont> CACHE SIZE IS 100 ROWS
cont> CREATE STORAGE AREA area1;

You can override the database default row cache by either specifying the
CACHE USING clause after the CREATE STORAGE AREA clause or by later
altering the database and storage area to assign a new row cache. Only one
row cache is allowed for each storage area.

6–340 SQL Statements

CREATE DATABASE Statement

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the database.

CARDINALITY COLLECTION IS ENABLED
CARDINALITY COLLECTION IS DISABLED
Specifies whether or not the optimizer records cardinality updates in the
system table. When enabled, the optimizer collects cardinalities for the table
and non-unique indexes as rows are inserted or deleted from tables. The
update of the cardinalities is performed at commit time, if sufficient changes
have accumulated, or at disconnect time.

In high update environments, it may be more convenient to disable cardinality
updates. If you disable this feature, you should manually maintain the
cardinalities using the RMU Analyze Cardinality command so the optimizer is
given the most accurate values for estimation purposes.

Cardinality collection is enabled by default.

CARRY OVER LOCKS ARE ENABLED
CARRY OVER LOCKS ARE DISABLED
Enables or disables carry-over lock optimization. Carry-over locks are enabled
by default.

While attached to the database, a process can have some active locks (locks
attached to the database) and some carry-over locks (locks requested in earlier
transactions that have not been demoted). If a transaction needs a lock it
has currently marked as carry-over, it can reuse the lock by changing it to an
active lock. The same lock can go from active to carry-over to active multiple
times without paying the cost of lock request and demotion. This substantially
reduces the number of lock requests if a process accesses the same areas
repeatedly.

As part of the carry-over lock optimization, a NOWAIT transaction requests,
acquires, and holds a NOWAIT lock. This signals other processes accessing
the database that a NOWAIT transaction exists and causes Oracle Rdb to
release all carry-over locks. If NOWAIT transactions are noticeably slow when
executing, you can specify CARRY OVER LOCKS ARE DISABLED with the
ALTER DATABASE or CREATE DATABASE statement.

This feature is available as an online database modification.

CHECKPOINT TIMED EVERY n SECONDS
For the row-cache-options clause, specifies the frequency with which the row-
cache server (RCS) process checkpoints the contents of the row caches back to
disk. The RCS process does not use the checkpoint frequency options of the
FAST COMMIT clause.

SQL Statements 6–341

CREATE DATABASE Statement

The frequency of RCS checkpointing is important in determining how much of
an .aij file must be read during a recovery operation following a node failure.
It also affects the frequency with which marked records get flushed back to the
database for those row caches that checkpoint to the database. The default is
every 15 minutes (900 seconds).

CHECKPOINT UPDATED ROWS TO BACKING FILE
CHECKPOINT UPDATED ROWS TO DATABASE
CHECKPOINT ALL ROWS TO BACKING FILE
Specifies the default source and target during checkpoint operations for all row
caches. If ALL ROWS is specified, then the source records written during each
checkpoint operation are both the modified and the unmodified rows in a row
cache. If UPDATED ROWS is specified, then just the modified rows in a row
cache are checkpointed each time.

If the target of the checkpoint operation is BACKING FILE, then the RCS
process writes the source row cache entries to the backing (.rdc) files. The row
cache LOCATION, ALLOCATION, and EXTENT clauses are used to create the
backing files. Upon recovery from a node failure, the database recovery process
is able to repopulate the row caches in memory from the rows found in the
backing files.

If the target is DATABASE, then updated row cache entries are written back
to the database. The row cache LOCATION, ALLOCATION, and EXTENT
clauses are ignored. Upon recovery from a node failure, the database recovery
process has no data on the contents of the row cache. Therefore, it does not
repopulate the row caches in memory.

The CHECKPOINT clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this database-level CHECKPOINT clause.

CHECKSUM CALCULATION IS ENABLED
CHECKSUM CALCULATION IS DISABLED
This option allows you to enable or disable calculations of page checksums
when pages are read from or written to the storage area or snapshot files.

The default is ENABLED.

Note

Oracle Corporation recommends that you leave checksum calculations
enabled, which is the default.

6–342 SQL Statements

CREATE DATABASE Statement

With current technology, it is possible that errors may occur that the checksum
calculation can detect but that may not be detected by either the hardware,
firmware, or software. Unexpected application results and database corruption
may occur if corrupt pages exist in memory or on disk but are not detected.

Oracle Corporation recommends performing checksum calculations, except in
the following specific circumstances:

• Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

• You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the checksum calculation depends primarily on
the size of the database pages in your database. The larger the database
page, the more noticeable the CPU usage by the checksum calculation may
become.

Note

Oracle Corporation recommends that you carefully evaluate the trade-
off between reducing CPU usage by the checksum calculation and the
potential for loss of database integrity if checksum calculations are
disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable checksum
calculation without error. However, once checksum calculations have been
disabled, corrupt pages may not be detected even if checksum calculations are
subsequently re-enabled.

CLEAN BUFFER COUNT IS buffer-count BUFFERS
Specifies the number of buffers to be kept available for immediate reuse.

Oracle Rdb maintains the number of buffers at the end of a process’ least
recently used queue of buffers for replacement.

The default is five buffers. The minimum value is one; the maximum value can
be as large as the buffer pool size.

You can override the number of clean buffers by defining the logical name
RDM$BIND_CLEAN_BUF_CNT. For information about how to set the values,
see the Oracle Rdb7 Guide to Database Performance and Tuning.

COLLATING SEQUENCE collation-name
Specifies a default collating sequence to be used for all CHAR and VARCHAR
columns in the database. SQL uses the default collating sequence if you do not
specify a collating sequence in subsequent CREATE DOMAIN statements.

SQL Statements 6–343

CREATE DATABASE Statement

Collation-name is a name of your choosing; you must use this name in any
COLLATING SEQUENCE clauses that refer to this collating sequence for
operations on this database.

COMMENT IS ’string’
Adds a comment about the collating sequence. SQL displays the text when it
executes a SHOW COLLATING SEQUENCE statement in interactive SQL.
Enclose the comment in single quotation marks (’) and separate multiple lines
in a comment with a slash mark (/).

COUNT IS n
Specifies the number of levels on the page lock tree used to manage locks.
For example, if you specify COUNT IS 3, the fanout factor is (10, 100, 1000).
Oracle Rdb locks a range of 1000 pages and adjusts downward to 100 and then
to 10 and then to 1 page when necessary.

If the COUNT IS clause is omitted, the default is 3. The value of n can range
from 1 through 8.

create-cache-clause
See the CREATE CACHE Clause for more details.

create-catalog-statement
See the CREATE CATALOG Statement for details.

If you want to specify a CREATE CATALOG statement in a CREATE
DATABASE statement, you must first specify a MULTISCHEMA IS ON
clause in the same CREATE DATABASE statement.

The CREATE CATALOG statement is committed immediately and cannot
be rolled back. Before you specify the CREATE CATALOG statement, the
following conditions must be true:

• The database is enabled for multischema.

• No transactions are active.

• The catalog alias must be the same as the database alias.

For information about enabling the database for multischema, see Section
2.2.11.

create-collating-sequence-statement
See the CREATE COLLATING SEQUENCE Statement for details.

6–344 SQL Statements

CREATE DATABASE Statement

If you want to specify a collating sequence in a CREATE DOMAIN statement
embedded in a CREATE DATABASE statement, you must first specify
a CREATE COLLATING SEQUENCE statement in the same CREATE
DATABASE statement.

create-domain-statement
See the CREATE DOMAIN Statement for details.

You cannot use the FROM path-name clause when embedding a CREATE
DOMAIN statement in a CREATE DATABASE statement. You can, however,
issue a separate CREATE DOMAIN statement following the CREATE
DATABASE statement. You can also describe the domain directly in the
CREATE DATABASE statement.

If you want to specify a collating sequence in your embedded CREATE
DOMAIN statement, you must first specify a CREATE COLLATING
SEQUENCE statement in the same CREATE DATABASE statement.

create-function-statement
A CREATE FUNCTION statement. See the CREATE ROUTINE Statement for
details.

create-index-statement
See the CREATE INDEX Statement for details.

create-module-statement
See the CREATE MODULE Statement for details.

create-procedure-statement
A CREATE PROCEDURE statement. See the CREATE ROUTINE Statement
for details.

create-schema-statement
See the CREATE SCHEMA Statement for details.

The schema you create must have the same alias as the catalog and database
that contain the schema, or they must share the default alias.

create-sequence-statement
See the CREATE SEQUENCE Statement for details.

create-storage-area-clause
See the CREATE STORAGE AREA Clause for more details.

create-storage-map-statement
See the CREATE STORAGE MAP Statement for details.

SQL Statements 6–345

CREATE DATABASE Statement

create-table-statement
See the CREATE TABLE Statement for details.

You cannot use the FROM path-name clause when embedding a CREATE
TABLE statement in a CREATE DATABASE statement. You can, however,
issue a separate CREATE TABLE statement following the CREATE
DATABASE statement. You can also describe the table directly in the CREATE
DATABASE statement.

The CREATE TABLE statements in a CREATE DATABASE statement can
refer to domains not yet created, provided that CREATE DOMAIN statements
for the domains are in the same CREATE DATABASE statement.

create-trigger-statement
See the CREATE TRIGGER Statement for details.

create-view-statement
See the CREATE VIEW Statement for details.

database-element
Database elements are a CREATE STORAGE AREA clause, any of the
CREATE statements (except CREATE DOMAIN . . . FROM path-name and
CREATE TABLE . . . FROM path-name), or a GRANT statement.

DBKEY SCOPE IS ATTACH
DBKEY SCOPE IS TRANSACTION
Controls when the database key of a deleted row can be used again by SQL.
This setting is not a database root file parameter, but a characteristic of the
implicit database attach executed by the CREATE DATABASE statement.
Thus, the DBKEY SCOPE clause in a CREATE DATABASE statement
takes effect only for the duration of the session of the user who entered the
statement.

• The default DBKEY SCOPE IS TRANSACTION means that SQL can reuse
the database key of a deleted table row (to refer to a newly inserted row)
as soon as the transaction that deleted the original row completes with a
COMMIT statement. (If the user who deleted the original row enters a
ROLLBACK statement, then the database key for that row cannot be used
again by SQL.)

During the connection of the user who entered the CREATE DATABASE
statement, the DBKEY SCOPE IS TRANSACTION clause specifies that
a database key is guaranteed to refer to the same row only within a
particular transaction.

6–346 SQL Statements

CREATE DATABASE Statement

• The DBKEY SCOPE IS ATTACH clause means that SQL cannot use the
database key again (to refer to a newly inserted row) until all users who
have attached with DBKEY SCOPE IS ATTACH have detached from the
database.

Also it only requires one process to attach with DBKEY SCOPE IS
ATTACH to force all database users to assume this characteristic.

• Oracle Corporation recommends using DBKEY SCOPE IS TRANSACTION
to prevent excessive consumption of storage area space by overhead needed
to support DBKEY SCOPE IS ATTACH, and to prevent performance
problems when storing new rows.

During the connection of the user who entered the CREATE DATABASE
statement, the DBKEY SCOPE IS ATTACH clause specifies that a database
key is guaranteed to refer to the same row until the user detaches from the
database.

For more information, see Section 2.6.5.

DEFAULT CHARACTER SET support-char-set
Specifies the database default character set for this database. For a list of
allowable character set names, see Section 2.1.

DEFAULT STORAGE AREA IS area-name
Specifies a default storage area to which all user data and unmapped indexes
are stored. The DEFAULT STORAGE AREA parameter separates user data
from the system data, such as system tables. RDB$SYSTEM is the default
area if you do not specify a default storage area.

In addition to user data, Oracle Rdb stores the following system tables in the
default storage area:

• RDB$INTERRELATIONS

• RDB$MODULES

• RDB$ROUTINES

• RDB$PARAMETERS

• RDB$QUERY_OUTLINES

• RDB$SEQUENCES

• RDB$PROFILES

• RDB$GRANTED_PROFILES

• RDB$TYPES

SQL Statements 6–347

CREATE DATABASE Statement

• RDB$TYPE_FIELDS

• RDB$WORKLOAD

• RDB$OBJECT_SYNONYMS

• RDB$SYNONYMS

• RDB$CATALOG_SCHEMA

For information on moving these system tables to other storage areas, see the
Oracle Rdb Guide to Database Design and Definition.

The DEFAULT STORAGE AREA parameter must reference an existing
storage area. You must create the storage area using the CREATE STORAGE
AREA clause in the same CREATE DATABASE statement as the DEFAULT
STORAGE AREA parameter.

DEPTH IS number-buffers BUFFERS
Specifies the number of buffers to prefetch for a process.

The default is one-quarter of the buffer pool, but not more than eight buffers.
You can override the number of buffers specified in the CREATE or ALTER
DATABASE statements by using the logical name RDM$BIND_APF_DEPTH.

You can also specify this option with the DETECTED ASYNC PREFETCH
clause.

DETECTED ASYNC PREFETCH IS ENABLED
DETECTED ASYNC PREFETCH IS DISABLED
Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk.

By using heuristics, detected asynchronous prefetch determines if an I/O
pattern is sequential in behavior even if sequential I/O is not actually executing
at the time. For example, when a LIST OF BYTE VARYING column is
fetched, the heuristics detect that the pages being fetched are sequential and
asynchronously fetches pages further in the sequence. This avoids wait times
when the page is really needed.

Detected asynchronous prefetch is enabled by default.

DICTIONARY IS REQUIRED
DICTIONARY IS NOT REQUIRED
Specifies whether or not definition statements issued for the database must
also be stored in the repository. If you specify REQUIRED, any data definition
statements issued after a DECLARE DATABASE statement that does not use
the PATHNAME argument fails.

6–348 SQL Statements

CREATE DATABASE Statement

If you omit the PATHNAME clause from the database root file parameters in
the CREATE DATABASE statement, SQL generates an error if you also specify
DICTIONARY IS REQUIRED.

The default is DICTIONARY IS NOT REQUIRED.

DISPLAY CHARACTER SET
Specifies the character set encoding and characteristics expected of text strings
returned back to SQL from Oracle Rdb. See the Usage Notes for additional
information.

EXTENT IS ENABLED
EXTENT IS DISABLED
Enables or disables extents. Extents are enabled by default.

You can encounter performance problems when creating hashed indexes in
storage areas with the mixed page format if the storage area was created
specifying the wrong size for the area and if extents are enabled. By disabling
extents, this problem can be diagnosed early and corrected to improve
performance.

EXTENT IS extent-pages PAGES
EXTENT IS (extension-options)
Specifies the number of pages of each storage area file extent. For more
information, see the SNAPSHOT EXTENT argument.

FILENAME file-spec
The file specification associated with the database.

You can omit the FILENAME clause if you specify the ALIAS clause. If you
omit the FILENAME clause, the file specification uses the following defaults:

• Device: the current device for the process

• Directory: the current directory for the process

• File name: the alias, if any was specified; otherwise omitting the
FILENAME clause generates an error

Use either a full file specification or a partial file specification.

You can use a logical name for all or part of a file specification.

If you use a simple file name, SQL creates the database in the current default
directory. Because the CREATE DATABASE statement may create more than
one file with different file extensions, do not specify a file extension with the
file specification.

SQL Statements 6–349

CREATE DATABASE Statement

The file specification may contain an OpenVMS remote node specification.
Oracle Rdb must be installed on that remote node so that the CREATE
DATABASE statement can be executed remotely. Note that all other file
specifications in the command (storage areas, snapshot files, recovery journal
location, and so on) must be specified using the logical names and device names
relative to that remote node.

The number and type of files created using the file specification in the
FILENAME clause depend on whether you create a multifile or single-file
database.

• In multifile CREATE DATABASE statements (any that include CREATE
STORAGE AREA clauses), SQL uses the file specification to create up to
three files:

A database root file with an .rdb file extension

A storage area file, with an .rda file extension, for the main storage
area, RDB$SYSTEM, (unless the CREATE DATABASE statement
contains a CREATE STORAGE AREA RDB$SYSTEM clause, which
overrides this file specification)

A snapshot file, with an .snp file extension, for the main storage area,
RDB$SYSTEM (unless the CREATE DATABASE statement contains a
CREATE STORAGE AREA RDB$SYSTEM clause, which overrides this
file specification)

• In single-file CREATE DATABASE statements (any that omit the CREATE
STORAGE AREA clause), SQL uses the file specification to create two
files:

A combined root and data file with an .rdb file extension

A snapshot file with an .snp file extension

If you create a single-file database, you cannot later create additional
data and snapshot files with ALTER DATABASE . . . ADD STORAGE
AREA statements. If you want to change a database from a single-file to a
multifile database, you must use the EXPORT and IMPORT statements.

FROM library-name
Specifies the name of an NCS library other than the default library. The
default NCS library is SYS$LIBRARY:NCS$LIBRARY.

GALAXY SUPPORT IS ENABLED
GALAXY SUPPORT IS DISABLED
Allows global memory to be shared in an OpenVMS Galaxy configuration.
Galaxy support is disabled by default.

6–350 SQL Statements

CREATE DATABASE Statement

OpenVMS Galaxy is a software architecture for the OpenVMS Alpha operating
system that enables multiple instances of OpenVMS to execute cooperatively
in a single computer. An instance refers to a copy of the OpenVMS Alpha
operating system. As an extension of the existing OpenVMS cluster support
within Oracle Rdb, Oracle Rdb provides support for databases opened on
multiple instances (or nodes) within a Galaxy system to share data structures
in memory. Within an Oracle Rdb Galaxy environment, all instances with an
open database share:

• Database root objects (for example, TSN blocks and SEQ blocks)

• Global buffers (if enabled)

• Row caches and Row Cache Server process (RCS) (if enabled)

GLOBAL BUFFERS ARE ENABLED
GLOBAL BUFFERS ARE DISABLED
Specifies that Oracle Rdb maintains one global buffer pool per VMScluster
node for each database. By default, Oracle Rdb maintains a local buffer pool
for each attach. For more than one attach to use the same page, each must
read it from disk into its local buffer pool. A page in the global buffer pool may
be read by more than one attach at the same time, although only one process
reads the page from the disk into the global buffer pool. Global buffering
provides improved performance because I/O is reduced and memory is better
utilized.

Note

If GALAXY SUPPORT is enabled, then a single global buffer pool is
shared by all Galaxy nodes.

grant-statement
See the GRANT Statement for details.

IDENTIFIER CHARACTER SET names-char-set
Specifies the identifier character set for user-supplied database object names,
such as table names and column names. The character set must contain ASCII
characters. See Section 2.1.5 for a list of allowable character sets.

INCREMENTAL BACKUP SCAN OPTIMIZATION
NO INCREMENTAL BACKUP SCAN OPTIMIZATION
Specifies whether Oracle Rdb checks each area’s SPAM pages or each database
page to find changes during incremental backup.

SQL Statements 6–351

CREATE DATABASE Statement

If you specify INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle Rdb
checks each area’s SPAM pages and scans the SPAM interval of pages only if
the SPAM transaction number (TSN) is higher than the root file backup TSN,
which indicates that a page in the SPAM interval has been updated since the
last full backup operation. Updates in the SPAM interval result in an extra
I/O.

Specify INCREMENTAL BACKUP SCAN OPTIMIZATION if your database
has large SPAM intervals or infrequently occurring updates, and you want to
increase the speed of incremental backups.

If you specify NO INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle
Rdb checks each page to find changes during incremental backup.

Specify the NO INCREMENTAL BACKUP SCAN OPTIMIZATION clause if
your database has frequently occurring updates, uses bulk-load operations,
or does not use incremental backups, or if you want to improve run-time
performance.

The default is INCREMENTAL BACKUP SCAN OPTIMIZATION.

INTERVAL IS number-data-pages
Specifies the number of data pages between space area management (SPAM)
pages in the storage area file, and therefore the maximum number of data
pages each space area management page will manage. The default, and also
the minimum interval, is 216 data pages. The first page of each storage
area is a space area management page. The interval you specify determines
where subsequent space area management pages are to be inserted, provided
there are enough data pages in the storage file to require more space area
management pages.

You cannot specify the INTERVAL storage area parameter for single-file
databases, and you cannot specify INTERVAL unless you also explicitly specify
PAGE FORMAT IS MIXED.

Oracle Rdb calculates the maximum interval size based on the number of
blocks per page and returns an error message if you exceed this value. For
example, when the page size is 2 blocks, the maximum interval is 4008 pages.
If you try to create a storage area with the interval set to 4009, Oracle Rdb
returns the following error message:

%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)
-RDMS-F-SPIMAX, spam interval of 4009 is more than the Rdb maximum of 4008
-RDMS-F-AREA_NAME, area NEW

For more information about setting space area management parameters, see
the Oracle Rdb Guide to Database Maintenance.

6–352 SQL Statements

CREATE DATABASE Statement

LARGE MEMORY IS ENABLED
LARGE MEMORY IS DISABLED
Specifies whether or not large memory is used to manage the row cache. Very
large memory (VLM) allows Oracle Rdb to use as much physical memory as is
available.

Use the LARGE MEMORY IS ENABLED clause only when both of the
following are true:

• You have enabled row caching.

• You want to cache large amounts of data, but the cache does not fit in the
virtual address space.

The default is the LARGE MEMORY IS DISABLED clause.

See the Usage Notes for restrictions pertaining to the very large memory
(VLM) feature.

LIMIT TO n AREAS
Specifies the number of storage areas to be created in parallel.

The number of areas should be smaller than the current process file open
quota. The number of areas can range from between 1 and the number of
storage areas being created.

LIST STORAGE AREA IS area-name
Specifies the name of the storage area to be used for table columns defined
through SQL with the LIST OF BYTE VARYING data type.

You can specify the LIST STORAGE AREA parameter for multifile databases
only.

By default, columns with the LIST OF BYTE VARYING data type are stored
in the RDB$SYSTEM storage area. If you specify a different storage area
in this clause, the CREATE DATABASE statement must include a CREATE
STORAGE AREA clause defining that area. For information about creating
multiple list storage areas for a table, see the CREATE STORAGE AREA
Clause.

Note

If you plan to store lists with segments of widely varying sizes, you
should specify a MIXED page format area just for list storage. (Do not
assign tables and indexes to the area.)

The database system looks for free space in an area when it stores
each segment of a segmented string. If size varies significantly among

SQL Statements 6–353

CREATE DATABASE Statement

the different segments of the lists that you plan to store, the interval
and threshold values that the database system automatically sets for
page format areas you specify as UNIFORM can make storing lists
time-consuming. For a mixed page format area, you can customize
interval and thresholds values to reduce the amount of time that the
database system spends looking for free space when it stores different
segments of the same segmented string.

The following example shows valid syntax for the LIST STORAGE AREA
clause:

SQL> CREATE DATABASE FILENAME test
cont> LIST STORAGE AREA IS registry_area
cont> CREATE STORAGE AREA RDB$SYSTEM FILENAME maintenance_area
cont> CREATE STORAGE AREA registry_area FILENAME registry_area;
SQL> CREATE STORAGE MAP registry_map
cont> STORE LISTS IN registry_area;

literal-user-auth
Specifies the user name and password for access to databases, particularly
remote database.

This literal lets you explicitly provide user name and password information in
the CREATE DATABASE statement.

LOCATION IS directory-spec
Specifies the name of the backing store directory to which row cache
information is written. The database system generates a file name (row-
cache-name.rdc) automatically for each row cache at checkpoint time. Specify a
device name and directory name only, enclosed within single quotation marks.
The file name is the row-cache-name specified when creating the row cache. By
default, the location is the directory of the database root file. These .rdc files
are permanent database backing store files.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location, which is the default for the database.

This clause is ignored if the row cache is defined to checkpoint to the database.

LOCK PARTITIONING IS ENABLED
LOCK PARTITIONING IS DISABLED
Specifies whether more than one lock tree is used for the database or all lock
trees for a database are mastered by one database resource tree.

6–354 SQL Statements

CREATE DATABASE Statement

When partitioned lock trees are enabled for a database, locks for storage areas
are separated from the database resource tree and all locks for each storage
area are independently mastered on the VMScluster node that has the highest
traffic for that resource. OpenVMS determines the node that is using each
resource the most and moves the resource hierarchy to that node.

You cannot enable lock partitioning for single-file databases. You should not
enable lock partitioning for single-node systems, because all lock requests are
local on single-node systems.

By default, lock partitioning is disabled.

LOCK TIMEOUT INTERVAL IS number-seconds SECONDS
Specifies the number of seconds for processes to wait during a lock conflict
before timing out. The number of seconds can be between 1 and 65,000
seconds.

Specifying 0 is interpreted as no lock timeout interval being set. It is not
interpreted as 0 seconds.

The lock timeout interval is database-wide; it is used as the default as well
as the upper limit for determining the timeout interval. For example, if the
database definer specified LOCK TIMEOUT INTERVAL IS 25 SECONDS in
the CREATE DATABASE statement, and a user of that database specified SET
TRANSACTION WAIT 30 or changed the logical name RDM$BIND_LOCK_
TIMEOUT_INTERVAL to 30, SQL uses the interval of 25 seconds. For more
information, see the SET TRANSACTION Statement and the Oracle Rdb7
Guide to Distributed Transactions.

LOCKING IS ROW LEVEL
LOCKING IS PAGE LEVEL
Specifies page-level or row-level locking as the default for the database. This
clause provides an alternative to requesting locks on records. You can override
the database default lock level at the storage area level. The default is ROW
LEVEL, which is compatible with previous versions of Oracle Rdb.

When many records are accessed in the same area and on the same page, the
LOCKING IS PAGE LEVEL clause reduces the number of lock operations
perfomed to process a transaction; however, this is at the expense of reduced
concurrency. Transactions that benefit most with page-level locking are of
short duration and also access several database records on the same page.

Use the LOCKING IS ROW LEVEL clause if transactions are long in duration
and lock many rows.

SQL Statements 6–355

CREATE DATABASE Statement

The LOCKING IS PAGE LEVEL clause causes fewer blocking ASTs and
provides better response time and utilization of system resources. However,
there is a higher contention for pages and increased potential for deadlocks
and long transactions may use excessive locks.

Page-level locking is never applied to RDB$SYSTEM or the DEFAULT storage
area, either implicitly or explicitly, because the lock protocol can stall metadata
users.

You cannot specify page-level locking on single-file databases.

LOGMINER SUPPORT IS ENABLED
LOGMINER SUPPORT IS DISABLED
Allows additional information to be written to the after-image journal file to
allow the use of the RMU Unload After_Image command. See Oracle RMU
Reference Manual for more details. Logminer support is disabled by default.

The LOGMINER SUPPORT clause allows the continuous mode for LogMiner
to be enabled and disabled.

• LOGMINER SUPPORT IS ENABLED (CONTINUOUS)

Enables continuous LogMiner.

• LOGMINER SUPPORT IS ENABLED (NOT CONTINUOUS)

Disables continuous LogMiner, but leaves LogMiner enabled.

• LOGMINER SUPPORT IS DISABLED

Disables LogMiner, including disabling continuous LogMiner.

MAXIMUM BUFFER COUNT IS buffer-count
Specifies the number of buffers a process will write asynchronously.

The default is one-fifth of the buffer pool, but not more than 10 buffers. The
minimum value is 2 buffers; the maximum value can be as large as the buffer
pool.

You can override the number of buffers to be written asynchronously by
defining the logical name RDM$BIND_BATCH_MAX. For information about
how to set the values, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

MAXIMUM OF max-pages PAGES
Specifies the maximum number of pages of each extent. The default is 9999
pages.

6–356 SQL Statements

CREATE DATABASE Statement

METADATA CHANGES ARE ENABLED
METADATA CHANGES ARE DISABLED
Specifies whether or not data definition changes are allowed to the database.
This attribute becomes effective at the next database attach and affects all
ALTER, CREATE, and DROP statements (except ALTER DATABASE, which is
needed for database tuning) and the GRANT, REVOKE, TRUNCATE TABLE,
COMMENT ON and RENAME statements. For example:

SQL> CREATE DATABASE FILENAME sample
cont> METADATA CHANGES ARE DISABLED;
SQL> CREATE TABLE t (a INTEGER);
SQL> DISCONNECT ALL;
SQL> ATTACH ’FILENAME sample’;
SQL> CREATE TABLE s (b INTEGER);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-NOMETADATA, metadata operations are disabled

The METADATA CHANGES ARE DISABLED clause prevents data definition
changes to the database. If you specify this clause in the CREATE DATABASE
statement, system index compression is implicitly enabled.

The METADATA CHANGES ARE ENABLED clause allows data definition
changes to the database by users granted the DBADMIN privilege.

METADATA CHANGES ARE ENABLED is the default.

MINIMUM OF min-pages PAGES
Specifies the minimum number of pages of each extent. The default is 99
pages.

MULTISCHEMA IS ON
MULTISCHEMA IS OFF
Specifies the multischema attribute for the database. You must specify the
multischema attribute for your database to create multiple schemas and
store them in catalogs. Each time you attach to a database created with the
multischema attribute, you can specify whether you want multischema naming
enabled or disabled for subsequent statements. For more information on
multischema naming, see Section 2.2.18.

If you prefer to access a database created with the multischema attribute as
though it were single-schema database, you can turn off multischema naming
using the MULTISCHEMA IS OFF clause in the ATTACH or DECLARE
ALIAS statement.

SQL Statements 6–357

CREATE DATABASE Statement

If you have turned off the multischema attribute, you can enable it again
using the MULTISCHEMA IS ON clause in the ATTACH or DECLARE ALIAS
statement. You can use multischema naming only when you are attached
to a database that was created with the multischema attribute. For more
information, see the ATTACH Statement.

Multischema naming is disabled by default.

MULTITHREAD AREA ADDITIONS
Specifies whether Oracle Rdb creates all storage areas in parallel, creates a
specified number in parallel, or creates areas serially.

This clause lets you determine the number of storage areas to be created in
parallel, possibly saving time during the initial database creation. However, if
you specify a large number of storage areas and many areas share the same
device, multithreading may cause excessive disk head movement, which may
result in the storage area creation taking longer than if the areas were created
serially. In addition, if you specify a large number of storage areas, you may
exceed process quotas, resulting in the database creation failing.

This setting is not saved as a permanent database attribute. It is used only
during the execution of the CREATE DATABASE, ALTER DATABASE, or
IMPORT statements.

If you do not specify the MULTITHREAD AREA ADDITIONS clause,
the default is to create one storage area at a time. If you specify the
MULTITHREAD AREA ADDITIONS clause, but do not specify an option,
the default is all areas are created in parallel.

NATIONAL CHARACTER SET support-char-set
Specifies the database national character set when you create a database. For
a list of allowable national character set names, see Section 2.1.

ncs-name
The OpenVMS National Character Set (NCS) utility provides a set of
predefined collating sequences and also lets you define collating sequences
of your own. In the default NCS library, SYS$LIBRARY:NCS$LIBRARY,
ncs-name is the name of a collating sequence or ncs-name is the name of
the collating sequence in the NCS library specified by the library-name
argument. (In most cases, it is simplest to make the collating sequence name
the same as the ncs-name, for example, CREATE DATABASE . . . COLLATING
SEQUENCE IS SPANISH SPANISH.) The COLLATING SEQUENCE clause
accepts both predefined and user-defined NCS collating sequences.

6–358 SQL Statements

CREATE DATABASE Statement

If you omit the COLLATING SEQUENCE clause in the CREATE DATABASE
statement at database definition time, the default sequence is the DEC
Multinational Character Set (MCS).

NO LOCATION
This is a subclause of other clauses and has different effects, depending upon
the clause in which it is used, as follows:

• In the row-cache-options clause

Removes the location previously specified in a LOCATION IS clause for the
row cache. If you specify NO LOCATION, the row cache location becomes
the directory of the database root file.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or
ALTER CACHE clause overrides this location, which is the default for
the database.

• In a CREATE CACHE, ADD CACHE, or ALTER CACHE clause (row-
cache-params1 clause)

Removes the location previously specified in a LOCATION IS clause for
the row cache backing file. If you specify NO LOCATION, the row cache
location becomes the directory of the database root file.

This clause is ignored if the row cache is defined to checkpoint to the
database.

NO ROW CACHE
Specifies that the database default is not to assign a row cache to all storage
areas in the database. You cannot specify the NO ROW CACHE clause if you
specify the CACHE USING clause.

Alter the storage area and name a row cache to override the database default.
Only one row cache is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the database.

NOTIFY IS ENABLED
NOTIFY IS DISABLED
Specifies whether system notification is enabled or disabled.

When the system notification is enabled, the system is notified (using the
OpenVMS OPCOM facility) in the event of events such as running out of disk
space for a journal.

SQL Statements 6–359

CREATE DATABASE Statement

If you specify the NOTIFY IS ENABLED clause and do not specify the ALERT
OPERATOR clause, the operator classes used are CENTRAL and CLUSTER.
To specify other operator classes, use the ALERT OPERATOR clause.

The NOTIFY IS ENABLED clause replaces any operator classes set by the
RMU Set After_Journal Notify command.

The default is disabled.

NUMBER IS number-glo-buffers
Specifies the default number of global buffers to be used on one node when
global buffers are enabled. This number appears as "global buffer count" in
RMU Dump command output. Base this value on the database users’ needs
and the number of attachments. The default is the maximum number of
attachments multiplied by 5.

Note

Do not confuse the NUMBER IS parameter with the NUMBER OF
BUFFERS IS parameter. The NUMBER OF BUFFERS IS parameter
determines the default number of buffers Oracle Rdb allocates to
each user process that attaches to the database. The NUMBER OF
BUFFERS IS parameter applies to, and has the same meaning for, both
local and global buffering. The NUMBER IS parameter has meaning
only within the context of global buffering.

You can override the default number of user-allocated buffers by defining a
value for the logical name RDM$BIND_BUFFERS. For more information, see
the Oracle Rdb7 Guide to Database Performance and Tuning.

Although you can change the NUMBER IS parameter on line, the change does
not take effect until the next time the database is opened.

NUMBER OF BUFFERS number-buffers
Specifies the number of buffers SQL allocates for each attach to this database.
This number is displayed as the "default database buffer count" in the output
from the RMU Dump command. The default buffer count applies to local and
global buffers.

Specify an unsigned integer greater than or equal to 2 and less than or equal
to 32,767. The default is 20 buffers.

6–360 SQL Statements

CREATE DATABASE Statement

NUMBER OF CLUSTER NODES number-nodes (SINGLE INSTANCE)
NUMBER OF CLUSTER NODES number-nodes (MULTIPLE INSTANCE)
Sets the upper limit on the maximum number of VMS cluster nodes from
which users can access the shared database. The default is 16 nodes. The
range is 1 to 96 nodes. The actual maximum limit is the current VMS cluster
node limit set by your system administrator.

The Oracle Rdb root file data structures (.rdb) are mapped to shared memory.
Each such shared memory copy is known as an Rdb instance. When there
is only one copy of shared memory containing root file information, several
optimizations are enabled to reduce locking and root file I/O during database
activity. To enable these optimizations, specify NUMBER OF CLUSTER
NODES 1, or use the SINGLE INSTANCE clause.

MULTIPLE INSTANCE means that the Oracle Rdb root file data structures
are mapped on different system and are kept consistent through disk I/O.
Such systems can not benefit from single instance optimizations. MULTIPLE
INSTANCE is the default.

NUMBER OF RECOVERY BUFFERS number-buffers
Specifies the number of buffers allocated to the automatic recovery process that
Oracle Rdb initiates after a system or process failure. This recovery process
uses the recovery-unit journal (.ruj) file.

Specify an unsigned integer greater than or equal to 2 and less than or equal
to 32,767. The default value for the NUMBER OF RECOVERY BUFFERS
parameter is 20 buffers. If you have a large, multifile database and you are
working on a system with a large amount of memory, specify a large number
of buffers. This result is faster recovery time. However, make sure your buffer
pool does not exceed the amount of memory you can allocate for the pool. if the
number of buffers is too large for the amount of memory on your system, the
system may be forced to perform virtual paging of the buffer pool. This can
slow performance time because the operating system must perform the virtual
paging of the buffer pool in addition to reading database pages. You may want
to experiment to determine the optimal number of buffers for your database.

Use the NUMBER OF RECOVERY BUFFERS option to increase the number
of buffers allocated to the recovery process.

SQL> CREATE DATABASE FILENAME personnel
cont> NUMBER OF RECOVERY BUFFERS 150;

This option is used only if the NUMBER OF RECOVERY BUFFERS value is
larger than the NUMBER OF BUFFERS value. For more information, see the
Oracle Rdb Guide to Database Maintenance.

SQL Statements 6–361

CREATE DATABASE Statement

NUMBER OF SWEEP ROWS IS n
Specifies the number of modified rows that will be written from the row cache
back to the database by the row cache server (RCS) process during a sweep
operation. When the RCS is notified that a cache is "full" of modified data,
the RCS starts a sweep to make space available in the cache for subsequent
transactions to be able to insert rows into the cache. Oracle Corporation
recommends that you initially specify the number of sweep rows to be
approximately 5 percent of the total number of rows in the cache. Then
monitor performance and adjust the number of sweep rows, if necessary.
Allowable values must be in the range 2 through 524288. If not specified, the
default is 3,000 rows.

NUMBER OF USERS number-users
Specifies the maximum number of users allowed to access the database at one
time. The default is 50 users. After the maximum is reached, the next user
who tries to invoke the database receives an error message and must wait.
The maximum number of users you can specify is 16368, and the minimum is
1 user.

Note that ‘‘number of users’’ is defined as the number of active attachments
to the database. Thus, if a single process runs one program but that program
performs 12 attach operations, the process is responsible for 12 active users as
defined by this argument.

For information on how the NUMBER OF USERS parameter affects the
NUMBER OF CLUSTER NODES parameter, see the Usage Notes.

OPEN IS MANUAL
OPEN IS AUTOMATIC
Specifies whether or not the database must be explicitly opened before users
can attach to it. The default, OPEN IS AUTOMATIC, means that any user
can open a previously unopened or a closed database by attaching to it and
executing a statement. The OPEN IS MANUAL option means that a privileged
user must issue an explicit OPEN statement through Oracle RMU, the Oracle
Rdb management utility, before other users can attach to the database.

The OPEN IS MANUAL option limits access to databases. You must have the
DBADM privilege to attach to the database.

You receive an error message if you specify both OPEN IS AUTOMATIC and
OPEN IS MANUAL options.

You can modify the OPEN IS option through the ALTER DATABASE
statement.

6–362 SQL Statements

CREATE DATABASE Statement

PAGE FORMAT IS UNIFORM
PAGE FORMAT IS MIXED
Specifies the on-disk structure for the storage area.

• The default is PAGE FORMAT IS UNIFORM and creates a storage area
data file that is divided into clumps. Clump size, which is derived from
buffer size, is 3 pages by default. A set of clumps forms a logical area that
can contain rows from a single table only. For more information on uniform
page formats, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

Uniform page format storage areas generally give the best performance if
the tables in the storage area are subject to a wide range of queries.

• The PAGE FORMAT IS MIXED clause creates a storage area with a format
that lets rows from more than one table reside on or near a particular page
of the storage area data file. This is useful for storing related rows from
different tables on the same page of the data file. For storage areas subject
to repeated queries that retrieve those related rows, a mixed page format
can greatly reduce I/O overhead if the mix of rows on the page is carefully
controlled. However, mixed page format storage areas degrade performance
if the mix of rows on the page is not suited for the queries made against
the storage area.

Note

The main storage area created by the CREATE DATABASE statement,
called RDB$SYSTEM, must have uniform pages. If you specify
PAGE FORMAT IS MIXED as a default storage area parameter, SQL
generates a warning message and overrides that default when it
creates the RDB$SYSTEM storage area.

PAGE SIZE IS page-blocks BLOCKS
The size in blocks of each database page. Page size is allocated in 512-byte
blocks. The default is 2 blocks (1024 bytes). If your largest row is larger than
approximately 950 bytes, allocate more blocks per page to prevent fragmented
rows. If you specify a page size larger than the buffer size, an error message is
returned.

PAGE TRANSFER VIA DISK
PAGE TRANSFER VIA MEMORY
Specifies whether Oracle Rdb transfers (flushes) pages to disk or to memory.

SQL Statements 6–363

CREATE DATABASE Statement

When you specify PAGE TRANSFER VIA MEMORY, processes on a single
node can share and update database pages in memory without transferring the
pages to disk. It is not necessary for a process to write a modified page to disk
before another process accesses the page.

The default is to DISK. If you specify PAGE TRANSFER VIA MEMORY, the
database must have the following characteristics:

• The NUMBER OF CLUSTER NODES must equal one, or SINGLE
INSTANCE must be specified in the NUMBER of CLUSTER NODES
clause.

• GLOBAL BUFFERS must be enabled.

• After-image journaling must be enabled.

• FAST COMMIT must be enabled.

If the database does not have these characteristics, Oracle Rdb will perform
page transfers via disk.

For more information about page transfers, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

PATHNAME path-name
The repository path name for the repository directory where the database
definition is stored.

Specify one of the following:

• A full repository path name, such as CDD$TOP.SQL.DEPT3

• A relative repository path name, such as DEPT3

• A logical name that refers to a full or relative repository path name

If you use a relative path name, CDD$DEFAULT must be defined as all the
path name segments preceding the relative path name. For example, define
CDD$DEFAULT as CDD$TOP.SQL, and then use the relative path name
DEPT3.

SQL> SHOW DICTIONARY
The current data dictionary is CDD$TOP.SQL
SQL> CREATE DATABASE ALIAS PERSONNEL PATHNAME DEPT3;

There is no default path name. If you do not specify a repository path name
for the database, SQL does not store database definitions in the repository.
Subsequent data definitions cannot use the repository. However, Oracle Rdb
recommends that you do specify a repository path name when you create a

6–364 SQL Statements

CREATE DATABASE Statement

database. For more information, see the Usage Notes in the DECLARE ALIAS
Statement.

If you use the PATHNAME argument and your system does not have the
repository, SQL ignores the argument.

When you use the PATHNAME argument, the repository associates the path
name with the file specification exactly as given in the CREATE DATABASE
statement. If that file specification is a file name, not a logical name, you
cannot alter or delete the database by specifying the path name unless the
database root file is in the current, default working directory.

PERCENT GROWTH IS growth
Specifies the percent growth of each extent. The default is 20 percent growth.

PRESTARTED TRANSACTIONS ARE ENABLED
PRESTARTED TRANSACTIONS ARE DISABLED
Enables or disables the prestarting of transactions.

Note that the keyword ON, available in previous versions, is synonymous
with ENABLED, and the OFF keyword is synonymous with the DISABLED
keyword.

This clause is used to establish a permanent database setting for prestarted
transactions. In prior versions, this clause was only used to temporarily set
the mode for prestarted transaction for the implicit attach performed by the
CREATE DATABASE and IMPORT DATABASE statements.

The prestart-trans-options can be one of the following clauses:

• WAIT n SECONDS FOR TIMEOUT

The n represents the number of seconds to wait before aborting the
prestarted transaction. Timing out the prestarted transaction may prevent
snapshot file growth in environments where servers stay attached to the
database with long periods of inactivity.

• WAIT n MINUTES FOR TIMEOUT

The n represents the number of minutes to wait before aborting the
prestarted transaction.

• NO TIMEOUT

This is the default for a prestarted transaction.

SQL Statements 6–365

CREATE DATABASE Statement

PROTECTION IS ANSI
PROTECTION IS ACLS
Specifies whether the database root file will be invoked with ACL-style or
ANSI/ISO-style privileges. If no protection clause is specified, the default is
ACL-style privileges.

For ACL-style databases, the access privilege set is order-dependent. When
a user tries to perform an operation on a database, SQL reads the associated
access privilege set, called the access control list (ACL), from top to bottom,
comparing the identifier of the user with each entry. As soon as SQL finds
a match, it grants the rights listed in that entry and stops the search. All
identifiers that do not match a previous entry ‘‘fall through’’ to the entry [*,*]
(equivalent to the SQL keyword PUBLIC). The default access for PUBLIC is
NONE.

See the GRANT Statement and the REVOKE Statement for more information
on ACL-style privileges.

For ANSI/ISO-style databases, the access privilege set is not order-dependent.
The user matches the entry in the access privilege set; gets whatever privileges
have been granted on the database, table, or column; and gets the privileges
defined for PUBLIC. A user without an entry in the access privilege set gets
only the privileges defined for PUBLIC. There is always an access privilege
entry for PUBLIC, even if that entry has no access to the database, table, or
column.

ANSI/ISO-style databases grant access to the creator when an object is
created. Because only the creator is granted access to the newly created object,
additional access must be granted explicitly.

See the GRANT Statement: ANSI/ISO-Style and the REVOKE Statement:
ANSI/ISO-Style for more information on ANSI/ISO-style privileges.

You can change the PROTECTION IS parameter by using the IMPORT
statement. See the IMPORT Statement for more information.

RECOVERY JOURNAL (BUFFER MEMORY IS LOCAL)
RECOVERY JOURNAL (BUFFER MEMORY IS GLOBAL)
Specifies whether RUJ buffers will be allocated in global or local memory.

The RUJ buffers used by each process are normally allocated in local virtual
memory. With the introduction of row caching, these buffers now can be
assigned to a shared global section (global memory) on OpenVMS, so that the
recovery process can process this in-memory buffer and possibly avoid a disk
access.

6–366 SQL Statements

CREATE DATABASE Statement

You can define this buffer memory to be global to improve row caching
performance for recovery. If row caching is disabled, then buffer memory is
always local.

RECOVERY JOURNAL (LOCATION IS directory-spec)
Specifies the location in which the recovery-unit journal (.ruj) file is written. Do
not include node names, file names, or process-concealed logical names in the
directory-spec. Single quotation marks are required around the directory-spec.
This clause overrides the RDMS$RUJ logical name.

If this clause is omitted, then NO LOCATION is assumed.

Following is an example using this clause:

SQL> ALTER DATABASE FILENAME SAMPLE
cont> RECOVERY JOURNAL (LOCATION IS ’SQL_USER1:[DBDIR.RECOVER]’)

See the Oracle Rdb Guide to Database Maintenance for more information on
recovery-unit journal files.

RECOVERY JOURNAL (NO LOCATION)
If you specify NO LOCATION, the recovery journal uses the current user’s
login device and the directory [RDM$RUJ]. See the Oracle Rdb Guide to
Database Maintenance for more information on recovery-unit journal files.

RESERVE n CACHE SLOTS
Specifies the number of row caches for which slots are reserved in the database.

You can use the RESERVE CACHE SLOTS clause to reserve slots in the
database root file for future use by the ADD CACHE clause of the ALTER
DATABASE statement. You can only add row caches if row cache slots are
available. Slots become available after a DROP CACHE clause or a RESERVE
CACHE SLOTS clause of the ALTER DATABASE statement.

The number of reserved slots for row caches cannot be decreased once the
RESERVE clause is issued. If you reserve 10 slots and later reserve 5 slots,
you have a total of 15 reserved slots for row caches

If you do not specify the RESERVE CACHE SLOTS clause, the default number
of row caches is one.

Reserving row cache slots is an offline operation (requiring exclusive database
access). See the CREATE CACHE Clause for more information.

RESERVE n JOURNALS
Specifies the number of journal files for which slots are reserved in the
database. If your database is not a multifile database, you cannot reserve
additional slots later using the ALTER DATABASE statement.

SQL Statements 6–367

CREATE DATABASE Statement

You must reserve slots before you can add journal files to the database.

See the ALTER DATABASE Statement for more information about adding
journal files and enabling the journaling feature.

The following SQL statements create a multifile database and reserve 5 slots
for future journal files.

SQL> CREATE DATABASE FILENAME test
cont> RESERVE 5 JOURNALS
cont> CREATE STORAGE AREA sa_one
cont> ALLOCATION IS 10 PAGES;

RESERVE n SEQUENCES
Specifies the number of sequences for which slots are reserved in the database.
Sequences are reserved in multiples of 32. Thus, if you specify a value less
than 32 for n, 32 slots are reserved. If you specify a value of 33, 64 slots are
reserved, and so on.

You can use the RESERVE SEQUENCES clause to reserve slots in the
database root file for future use by the CREATE SEQUENCE statement.
Sequences can be created only if sequence slots are available. Slots become
available after a DROP SEQUENCE statement or a RESERVE SEQUENCES
clause of the ALTER DATABASE statement is executed.

The number of reserved slots for sequences cannot be decreased.

If you do not specify the RESERVED SEQUENCES clause, the default number
of sequence slots is 32.

RESERVE n STORAGE AREAS
Specifies the number of storage areas for which slots are reserved in the
database. The number of slots for storage areas must be a positive number
greater than zero.

You can use the RESERVE STORAGE AREA clause to reserve slots in the
database root file for future use by the ADD STORAGE AREA clause of the
ALTER DATABASE statement. Storage areas can be added only if there are
storage area slots available. Slots become available after a DROP STORAGE
AREA clause or a RESERVE STORAGE AREA clause.

The number of reserved slots for storage areas cannot be decreased once the
RESERVE clause is issued. If you reserve 5 slots and later reserve 10 slots,
you have a total of 15 reserved slots for storage areas.

If you do not specify the RESERVE STORAGE AREA clause, the default
number of storage areas is zero.

6–368 SQL Statements

CREATE DATABASE Statement

RESTRICTED ACCESS
NO RESTRICTED ACCESS
Restricts access to the database. This allows you to access the database but
locks out all other users until you disconnect from the database. Setting
restricted access to the database requires DBADM privileges.

The default is NO RESTRICTED ACCESS.

root-file-params-1
root-file-params-2
root-file-params-3
root-file-params-4
Parameters that control the characteristics of the database root file or
characteristics stored in the database root file that apply to the entire database.
You can specify these parameters for either single-file or multifile databases.

Some database root file parameters specified in the CREATE DATABASE
statement cannot be changed with the ALTER DATABASE statement. To
change these database root file parameters, you must use the EXPORT and
IMPORT statements. See the EXPORT Statement and the IMPORT Statement
for information on exporting and importing your database.

ROW CACHE IS ENABLED
ROW CACHE IS DISABLED
Specifies whether or not you want Oracle Rdb to enable the row caching
feature.

When a database is created or is converted from a previous version of Oracle
Rdb without specifying row cache support, the default is ROW CACHE IS
DISABLED. Enabling row cache support does not affect database operations
until a row cache is created and assigned to one or more storage areas.

When the row caching feature is disabled, all previously created and assigned
row cache definitions remain in existence for future use when the row caching
feature is enabled.

The following conditions must be true in order to use row caches:

• The number of cluster nodes is one

• After-image journaling is enabled

• Fast commit is enabled

• One or more cache slots are reserved

• Row caching is enabled

SQL Statements 6–369

CREATE DATABASE Statement

Use the RMU Dump Header command to check if you have met the
requirements for using row caches. The following command output displays a
warning for every requirement that is not met:

.

.

.
Row Caches...

- Active row cache count is 0

- Reserved row cache count is 1

- Sweep interval is 1 second

- Default cache file directory is ""

- WARNING: Maximum node count is 16 instead of 1

- WARNING: After-image journaling is disabled

- WARNING: Fast commit is disabled
.
.
.

ROWID SCOPE IS ATTACH
ROWID SCOPE IS TRANSACTION
The ROWID keyword is a synonym for the DBKEY keyword. See the DBKEY
SCOPE IS argument for more information.

SECURITY CHECKING
Traditionally, Oracle Rdb has performed security checking using the operating
system security layer (for example, the UIC and rights identifiers of the
OpenVMS operating system).

The access control list (ACL) information stored in the database contains a
granted privilege mask and a set of users represented by a unique integer (for
example, a UIC).

There are two modes of security checking:

1. SECURITY CHECKING IS EXTERNAL

This is the default. External security checking recognizes database users
(created with the SQL CREATE USER statement) as operating system
user identification codes (UICs) and roles as special rights identifiers or
groups. PERSONA support is enabled or disabled as follows:

• SECURITY CHECKING IS EXTERNAL (PERSONA SUPPORT IS
ENABLED)

6–370 SQL Statements

CREATE DATABASE Statement

Enables the full impersonation of an OpenVMS user. This means the
UIC and the granted right identifiers are used to check access control
list permissions.

• SECURITY CHECKING IS EXTERNAL (PERSONA SUPPORT IS
DISABLED)

Disables the full impersonation of an OpenVMS user. Only the UIC
is used to check access control list permissions. This is the default for
a new database, or for a database converted from a prior version of
Oracle Rdb.

2. SECURITY CHECKING IS INTERNAL

In this mode, Oracle Rdb records users (username and UIC) and roles
(rights identifiers) in the database. The CREATE USER and CREATE
ROLE statements perform this action explicitly, and GRANT will perform
this implicitly. This type of database can now be moved to another system
and is only dependent on the names of the users and roles.

• SECURITY CHECKING IS INTERNAL (ACCOUNT CHECK IS
ENABLED)

The ACCOUNT CHECK clause ensures that Oracle Rdb validates the
current database user with the user name (such as defined with an
SQL CREATE USER statement) stored in the database. This prevents
different users with the same name from accessing the database.
Therefore, this clause might prevent a breach in security.

The ACCOUNT CHECK IS ENABLED clause on OpenVMS forces the
user session to have the same user name and UIC as recorded in the
database.

• SECURITY CHECKING IS INTERNAL (ACCOUNT CHECK IS
DISABLED)

If you specify the ACCOUNT CHECK IS DISABLED clause, then a
user with a matching UIC (also called a profile-id) is considered the
same as the user even if his or her user name is different. This allows
support for multiple OpenVMS users with the same UIC.

SEGMENTED STRING STORAGE AREA IS area-name
Another name for LIST STORAGE AREA.

SET TRANSACTION MODES
Enables only the modes specified, disabling all other previously defined modes.
For example, if a database is to be used for read-only access and you want to
disable all other transaction modes, use the following statement:

SQL Statements 6–371

CREATE DATABASE Statement

SQL> CREATE DATABASE FILENAME mf_personnel
cont> SET TRANSACTION MODES (READ ONLY);

If not specified, the default transaction mode is ALL.

Specifying a negated transaction mode or specifying NONE disables all
transaction usage. Disabling all transaction usage would be useful when, for
example, you want to perform major restructuring of the physical database.
Execute the ALTER DATABASE statement to re-enable transaction modes or
use Oracle RMU, the Oracle Rdb management utility.

SHARED MEMORY IS PROCESS RESIDENT
The SHARED MEMORY clause determines whether database root global
sections (including global buffers when enabled) or whether the cache global
sections are created in system space or process space. The RESIDENT option
extends the PROCESS option by making the global section memory resident.

SHARED MEMORY IS SYSTEM
SHARED MEMORY IS PROCESS
Determines whether database root global sections (including global buffers
when enabled) are created in system space or process space. The default is
PROCESS.

When you use global sections created in the process space, you and other users
share physical memory and the OpenVMS operating system maps a row cache
to a private address space for each user. As a result, all users are limited
by the free virtual address range and each use a percentage of memory in
overhead. If many users are accessing the database, the overhead can be high.

SNAPSHOT ALLOCATION IS snp-pages PAGES
Changes the number of pages allocated for the snapshot file. The default is
100 pages. If you have disabled the snapshot file, you can set the snapshot
allocation to 0 pages.

SNAPSHOT CHECKSUM ALLOCATION IS ENABLED
SNAPSHOT CHECKSUM ALLOCATION IS DISABLED
See the CHECKSUM ALLOCATION clause for details.

SNAPSHOT IS ENABLED IMMEDIATE
SNAPSHOT IS ENABLED DEFERRED
Specifies when read/write transactions write database changes they make to
the snapshot file used by read-only transactions.

The default is ENABLED IMMEDIATE and causes read/write transactions to
write copies of rows they modify to the snapshot file, regardless of whether or
not a read-only transaction is active.

6–372 SQL Statements

CREATE DATABASE Statement

The ENABLED DEFERRED option lets read/write transactions avoid writing
copies of rows they modify to the snapshot file (unless a read-only transaction
is already active). Deferring snapshot writing in this manner improves the
performance for the read/write transaction. However, read-only transactions
that attempt to start after an active read/write transaction starts must wait for
all active read/write users to complete their transactions.

SNAPSHOT EXTENT IS extent-pages PAGES
SNAPSHOT EXTENT IS (extension-options)
Specifies the number of pages of each snapshot or storage area file extent. The
default extent for storage area files is 99 pages.

Specify a number of pages for simple control over the extension. For greater
control, and particularly for multivolume databases, use the MINIMUM,
MAXIMUM, and PERCENT GROWTH extension options instead.

If you use the MINIMUM, MAXIMUM, and PERCENT GROWTH parameters,
you must enclose them in parentheses.

SNAPSHOT FILENAME file-spec
Provides a separate file specification for the storage area snapshot file. The
SNAPSHOT FILENAME argument can only be used with a multifile database.

In a multifile database, the file specification is used for the RDB$SYSTEM
storage area snapshot file, unless the CREATE DATABASE statement contains
a CREATE STORAGE AREA RDB$SYSTEM clause that contains its own
SNAPSHOT FILENAME clause.

Do not specify a file extension other than .snp to the snapshot file specification.
Oracle Rdb will assign the extension .snp to the file specification, even if you
specify an alternate extension.

If you omit the SNAPSHOT FILENAME argument, the .snp file gets the same
device, directory, and file name as the database root file.

SNAPSHOT IS DISABLED
Specifies that snapshot writing is disabled. Snapshot writing is enabled by
default. If you specify the SNAPSHOT IS DISABLED option, you cannot
specify either of the SNAPSHOT IS ENABLED options, and you cannot back
up the database on line. You can, however, continue to set snapshot options
in the event that you will enable snapshots in the future. SQL warns you
of a possible conflict in the setting of snapshot options while snapshots are
disabled, but SQL will execute the statement.

SQL Statements 6–373

CREATE DATABASE Statement

SNAPSHOT IS ENABLED IMMEDIATE
SNAPSHOT IS ENABLED DEFERRED
Specifies when read/write transactions write database changes they make to
the snapshot file used by read-only transactions.

The default is ENABLED IMMEDIATE and causes read/write transactions to
write copies of rows they modify to the snapshot file, regardless of whether or
not a read-only transaction is active.

The ENABLED DEFERRED option lets read/write transactions avoid writing
copies of rows they modify to the snapshot file (unless a read-only transaction
is already active). Deferring snapshot writing in this manner improves the
performance for the read/write transaction. However, read-only transactions
that attempt to start after an active read/write transaction starts must wait for
all active read/write users to complete their transactions.

STATISTICS COLLECTION IS ENABLED
STATISTICS COLLECTION IS DISABLED
Specifies whether the collection of statistics for the database is enabled or
disabled. When you disable statistics for the database, statistics are not
displayed for any of the processes attached to the database. Statistics are
displayed using the RMU Show Statistics command.

The default is STATISTICS COLLECTION IS ENABLED. You can disable
statistics using the ALTER DATABASE and IMPORT statements.

For more information on the RMU Show Statistics command, see the Oracle
RMU Reference Manual.

You can enable statistics collection by defining the logical name RDM$BIND_
STATS_ENABLED. For more information about when to use statistics
collection, see the Oracle Rdb7 Guide to Database Performance and Tuning.

storage-area-params
Parameters that control the characteristics of database storage area files. You
can specify most storage area parameters for either single-file or multifile
databases, but the effect of the clauses differs.

• For single-file databases, the storage area parameters specify the
characteristics for the single storage area in the database.

• For multifile databases, the storage area parameters specify a set of
default values for any storage areas created by the CREATE DATABASE
statement that do not specify their own values for the same parameters.
The default values apply to the RDB$SYSTEM storage area, plus any
others named in CREATE STORAGE AREA database elements.

6–374 SQL Statements

CREATE DATABASE Statement

The CREATE STORAGE AREA clauses in a CREATE DATABASE
statement can override these default values. The default values do not
apply to any storage areas created later with the ALTER DATABASE
statement.

SWEEP INTERVAL IS n SECONDS
Specifies the interval, in seconds, between each Record Cache Server (RCS)
sweep. Allowable values must be in the range from 1 second to 3600 seconds
(1 hour). The default is 1.

The Record Cache Server (RCS) is a detached server process automatically
invoked by the monitor when row caching is active.

A sweep is one full pass through all active row cache areas to write modified
rows back to the database storage areas.

SYSTEM INDEX (COMPRESSION IS . . .)
This clause allows the database creator choose compressed system indexes.
The default is SYSTEM INDEX (COMPRESSION IS DISABLED).

If enabled Oracle Rdb uses run-length compression, which compresses any
sequences of two or more spaces from text data types or two or more binary
zeros from non-character data types. Compressing system indexes results in
reduced storage and improved I/O. Unless your applications frequently perform
concurrent data definition, you should compress system indexes.

Once you create a database specifying the SYSTEM INDEX (COMPRESSION
IS . . .) clause, you only can change it using the EXPORT and IMPORT
statements. You cannot alter the database to change the compression mode.

The clause SYSTEM INDEX COMPRESSION IS is identical to this clause and
is retained for compatibility with older versions of Oracle Rdb.

SYSTEM INDEX (PREFIX CARDINALITY COLLECTION IS . . .)
This clause allows the database creator to adjust the prefix cardinality
collection for system indices. Refer to the CREATE INDEX Statement
for more details on these clauses. The default is PREFIX CARDINALITY
COLLECTION IS ENABLED.

SYSTEM INDEX (TYPE IS . . .)
This clause allows the database creator choose between SORTED or SORTED
RANKED indices for system table. The default is SORTED. SORTED
RANKED indices have advantages in space usage and reduced CPU during
DDL operations for those system indices with many duplicates.

SQL Statements 6–375

CREATE DATABASE Statement

SYNONYMS ARE ENABLED
Adds the optional system table RDB$OBJECT_SYNONYMS that is used for
the CREATE SYNONYM, ALTER . . . RENAME TO and RENAME statements.
The default if omitted is disabled.

THRESHOLD IS number-buffers BUFFERS
This number represents the number of sequential buffer accesses that must be
detected before prefetching is started. The default is four buffers.

If you specify the THRESHOLD option, you must have also specified the
DETECTED ASYNC PREFETCH clause. You receive an error if you attempt
to specify the THRESHOLD option with the ASYNC PREFETCH clause.

THRESHOLDS ARE (val1 [,val2 [,val3]])
Specifies one, two, or three threshold values. The threshold values represent
a fullness percentage on a data page and establish four possible ranges of
guaranteed free space on the data pages. When a data page reaches the
percentage defined by a given threshold value, the space area management
(SPAM) entry for the data page is updated to reflect the new fullness
percentage and its remaining free space.

The default thresholds are 70, 85, and 95 percent. If you specify only one or
two values, unspecified values default to 100 percent.

You cannot specify the THRESHOLDS storage area parameter for single-file
databases, and you cannot specify THRESHOLDS unless you also explicitly
specify PAGE FORMAT IS MIXED. To specify thresholds for uniform storage
areas, use the CREATE STORAGE MAP statement.

For more information about setting space area management parameters, see
the Oracle Rdb Guide to Database Maintenance.

USER ’username’
A character string literal that specifies the operating system user name that
the database system uses for privilege checking. This clause also sets the value
of the SYSTEM_USER value expression.

USER LIMIT IS max-glo-buffers
Specifies the maximum number of global buffers each attach allocates. Because
global buffer pools are shared by all attachments, you must define an upper
limit on how many global buffers a single attach can allocate. This limit
prevents a user from defining the RDM$BIND_BUFFERS logical name to
use all the buffers in the global buffer pool. (The behavior of RDM$BIND_
BUFFERS which depends on whether you are using local or global buffers, is
explained in the Oracle Rdb7 Guide to Database Performance and Tuning.)

6–376 SQL Statements

CREATE DATABASE Statement

The user limit cannot be greater than the total number of global buffers. The
default is 5 buffers. The user limit appears as "maximum global buffer count
per user" in RMU Dump command output.

Decide the maximum number of global buffers a process can allocate per attach
by dividing the total number of global buffers set by the NUMBER IS clause
by the total number of attachments for which you want to guarantee access
to the database. For example, if the total number of global buffers is 200 and
you want to guarantee at least 10 attachments access to the database, set the
maximum number of global buffers per attach to 20.

In general, when you use global buffers, you should set the maximum global
buffer count per user higher than the default database buffer count. For
maximum performance on a VMScluster system, tune the two global buffer
parameters on each node in the cluster using the RMU Open command with
the Global_Buffers qualifier.

Although you can change the USER LIMIT IS parameter on line, the change
does not take effect until the next time the database is opened.

The NUMBER IS and USER LIMIT IS parameters are the only two buffer
parameters specific to global buffers. They are, therefore, in effect on a per
node rather than a per process basis.

USING ’password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

txn-modes
Specifies the transaction modes for the database.

Mode Description

ALL All modes are enabled.
NONE No modes are enabled.

SQL Statements 6–377

CREATE DATABASE Statement

Mode Description

Transaction Types

[NO]READ ONLY Allows read-only transactions on the database.
[NO]READ WRITE Allows read/write transactions on the database.
[NO] BATCH
UPDATE

Allows batch-update transactions on the database.
This mode executes without the overhead, or security,
or a recovery-unit journal file. The batch-update
transaction is intended for the initial loading of a
database. Oracle Rdb recommends that this mode be
disabled.

Reserving Modes

[NO] SHARED
[READ | WRITE]

Allows tables to be reserved for shared mode. That is,
other users can work with those tables.

[NO] PROTECTED
[READ | WRITE]

Allows tables to be reserved for protected mode. That
is, other users can read from those tables.

[NO] EXCLUSIVE
[READ | WRITE]

Allows tables to be reserved for exclusive access. That
is, other users are prevented access to those tables,
even in READ ONLY transactions.

ALL Allows other users to work with all tables.
NONE Allows no access to tables.

For detailed information about the txn-modes, see the SET TRANSACTION
Statement.

WAIT n MINUTES FOR CLOSE
Specifies the amount of time that Oracle Rdb waits before automatically
closing a database. If anyone attaches during that wait time, the database is
not closed.

The default value for n is zero (0) if the WAIT clause is not specified. The
value for n can range from zero (0) to 35,791,394. However, Oracle Rdb does
not recommend using large values.

WORKLOAD COLLECTION IS ENABLED
WORKLOAD COLLECTION IS DISABLED
Specifies whether or not the optimizer records workload information in
the system table RDB$WORKLOAD. The WORKLOAD COLLECTION IS
ENABLED clause creates this system table if it does not exist. If you later
disable workload collection, the RDB$WORKLOAD system table is not deleted.

6–378 SQL Statements

CREATE DATABASE Statement

A workload profile is a description of the interesting table and column
references used by queries in a database workload. When workload
collection is enabled, the optimizer collects and records these references in
the RDB$WORKLOAD system table. This work load is then processed by the
RMU Analyze Statistics command which records useful statistics about the
work load. These workload statistics are used by the optimizer at run time to
deliver more accurate access strategies.

Workload collection is disabled by default.

Usage Notes

• The CREATE DATABASE statement starts and commits several
transactions. However, you cannot roll back a CREATE DATABASE
statement.

• You cannot issue the CREATE DATABASE statement when a transaction
is active. If possible, make CREATE DATABASE the first SQL statement
in a program or in an interactive session.

• A context structure is the data structure that describes the distributed
transaction context. You cannot pass a context structure for a distributed
transaction to a CREATE DATABASE statement because you cannot
execute it when a transaction is already started.

• Although you cannot issue a CREATE DATABASE statement while a
transaction is active, SQL lets you issue a CREATE DATABASE statement
after a transaction is declared.

When you do this, SQL automatically extends the scope of the currently
declared transaction to include the new database. SQL uses the alias
in the CREATE DATABASE statement and declares default transaction
options (read/write, wait) for that alias. SQL preserves the transaction
options for databases that were already part of the currently declared
transaction.

• By using the RDBVMS$CREATE_DB logical name and the
RDBVMS$CREATE_DB identifier, you can restrict the ability of users
to create databases on your system. For more information on the
RDBVMS$CREATE_DB logical name and identifier, see the chapter on
defining database protection in the Oracle Rdb Guide to Database Design
and Definition.

SQL Statements 6–379

CREATE DATABASE Statement

• The CREATE DATABASE statement creates a default access control list
(ACL) for the database that gives the creator all SQL privileges to the
database and no SQL privileges to all other users.

• When you create a database in a directory owned by a resource identifier,
the access control entry for the directory is applied to the database rootfile
ACL, and then the RMU access control entry is added. This is to prevent
database users from overriding OpenVMS file security. However, this can
result in a database that you consider your own, but to which you have no
RMU access privileges.

For more details and a workaround on this issue, see the Oracle RMU
Reference Manual and the Oracle Rdb Guide to Database Maintenance.

• A process that requests more global buffers than the maximum is granted
the maximum number of global buffers. This can cause slower performance
than expected without any indication that something is wrong.

• If you attempt to define a database with the following collating sequence,
Oracle Rdb returns an arithmetic exception error:

native_2_upper_lower = cs(
sequence = (%X00,"#"," ","A","a","B","b","C","c","D","d","E",
"e","8","F","f","5"-"4","G","g","H","h","I","i","J","j","K","k",
"L","l","M","m","N","n","9","O","o","1","P","p","Q","q","R","r",
"S","s","7"-"6","T","t","3"-"2","U","u","V","v","W","w","X","x",
"Y","y","Z","z"),
modifications = (%X01-%X1F=%X00,"!"-""""=%X00,"$"-"0"=%X00,":"-"@"=
%X00,
"{"-%XFF=%X00,""="A"));

The modifications portion of the collating sequence results in too many
characters being converted to NULL. Oracle Rdb can only handle about 80
character conversions to NULL.

A workaround is to modify the MULTINATIONAL2 character set to sort in
the desired order.

• You cannot specify a snapshot file name for a single-file database.

The SNAPSHOT FILENAME clause specified outside the CREATE
STORAGE AREA clause is used to provide a default for subsequent
CREATE STORAGE AREA statements. Therefore, this clause does not
allow you to create a separate snapshot file for a single-file database (a
database without separate storage areas).

When you create a single-file database, Oracle Rdb does not store the file
specification of the snapshot file. Instead, it uses the file specification of
the root file (.rdb) to determine the file specification of the snapshot file.

6–380 SQL Statements

CREATE DATABASE Statement

If you want to place the snapshot file on a different device or in a different
directory, create a multifile database.

However, you can work around the restriction on OpenVMS platforms
by defining a search list for a concealed logical name. (However, do not
use a nonconcealed rooted logical name. Database files defined with a
nonconcealed rooted logical name can be backed up, but do not restore as
expected.)

To create a database with a snapshot file on a different device or in a
different directory:

1. Define a search list using a concealed logical name. Specify the location
of the root file as the first item in the search list and the location of the
snapshot file as the second item.

2. Create the database using the logical name for the directory
specification.

3. Copy the snapshot file to the second device or directory.

4. Delete the snapshot file from the original location.

If you are doing this with an existing database, close the database using
the RMU Close command before defining the search list, and open the
database using the RMU Open command after deleting the original
snapshot file. Otherwise, follow the preceding steps.

An important consideration when placing snapshot and database files on
different devices is the process of backing up and restoring the database.
Use the RMU Backup command to back up the database. You can then
restore the files by executing the RMU Restore command. Copy the
snapshot file to the device or directory where you want it to reside, and
delete the snapshot file from the location to which it was restored. For
more information, see the Oracle RMU Reference Manual.

• You must set a dialect prior to creating a database if you wish to have
extended character set support and you are specifying the default, national,
or identifier character sets. See the SET DIALECT Statement for more
information on setting a dialect.

• The database default character set specifies the character set for columns
with CHAR and VARCHAR data types. For more information on the
database default character set, see Section 2.1.3.

• The national character set specifies the character set for columns with the
NCHAR and NCHAR VARYING data types. For more information on the
national character set, see Section 2.1.7.

SQL Statements 6–381

CREATE DATABASE Statement

• The identifier character set specifies the character set for object names
such as cursor names and table names. For more information on the
identifier character set, see Section 2.1.5.

• If the DEFAULT CHARACTER SET clause is omitted, Oracle Rdb assumes
that the database default character set is the default character set of the
session within which the CREATE DATABASE statement is invoked if
the dialect was previously set to SQL99 or MIA. Otherwise, the database
default character set is DEC_MCS if this clause is omitted.

• If the NATIONAL CHARACTER SET clause is omitted, Oracle Rdb
assumes that the national character set is the national character set of
the session within which the CREATE DATABASE statement is invoked if
the dialect was previously set to SQL99 or MIA. Otherwise, the national
character set is DEC_MCS if this clause is omitted.

• If the IDENTIFIER CHARACTER SET clause is omitted, Oracle Rdb
assumes that the identifier character set is the identifier character set of
the session within which the CREATE DATABASE statement is invoked if
the dialect was previously set to SQL99 or MIA. Otherwise, the identifier
character set is DEC_MCS if this clause is omitted.

• Specifying the DISPLAY CHARACTER SET clause on the ATTACH,
CREATE DATABASE, or DECLARE ALIAS statements takes precedence
over any previously issued SET DISPLAY CHARACTER SET or SET
AUTOMATIC TRANSLATION statements.

• If the database default character set is not DEC_MCS, the PATHNAME
specifier cannot be used due to limitations of the CDD/Repository, where
object names must only contain DEC_MCS characters. SQL flags this as
an error.

• The database default, national, and identifier character sets cannot be
changed after creation of the database.

• CREATE DATABASE statements in programs must precede (in the source
file) all other data definition language (DDL) statements that refer to the
database.

• You cannot specify the COMMENT ON statement in a CREATE
DATABASE statement.

• Oracle Corporation recommends that you specify the UNIFORM page
format for improved performance when specifying a default storage area.

• You cannot delete a storage area that has been established as the database
default storage area.

6–382 SQL Statements

CREATE DATABASE Statement

• Setting the transaction mode to READ ONLY when creating a database
prevents you from being able to define any database objects.

• You cannot enable after-image journaling or add after-image journal files
with the CREATE DATABASE statement. You must use the ALTER
DATABASE statement to enable after-image journaling or add after-image
journal files.

• The RDB$PROFILES system table is used to record users, roles and
profiles created with the CREATE USER, CREATE PROFILE, and
CREATE ROLE statements. When a database is created, the creator
is automatically added as a user.

• The GRANT statement may reference operating system users or groups
prior to those users or roles being created in the database. In this case,
Oracle Rdb automatically creates users and roles that correspond to the
IDENTIFIED EXTERNALLY clause of the CREATE USER or CREATE
ROLE statements.

• A node specification may only be specified for the root FILENAME clause
of the CREATE DATABASE statement.

This means that the directory or file specification specified with the
following clauses can only be a device, directory, file name, and file type:

LOCATION clause of the ROW CACHE IS ENABLED, RECOVERY
JOURNAL, ADD CACHE, and CREATE CACHE clauses

SNAPSHOT FILENAME clause

FILENAME and SNAPSHOT FILENAME clauses of the ADD
STORAGE AREA and CREATE STORAGE AREA clauses

• Very large memory (VLM) allows Oracle Rdb to use as much physical
memory as is available on your system and to dynamically map it to the
virtual address space of database users. VLM provides access to a large
amount of physical memory through small virtual address windows. Even
though VLM is defined in physical memory, the virtual address windows
are defined and maintained in each user’s private virtual address space.
Global buffers in VLM are fully resident, or pinned, in memory and do not
directly affect the quotas of the working set of a process.

The number of virtual address ‘‘windows’’ per process is based on the global
buffers maximum ’allocate set’ parameter specified with the USER LIMIT
IS value of the ALTER DATABASE . . . GLOBAL BUFFERS command and
is not directly adjustable.

SQL Statements 6–383

CREATE DATABASE Statement

The LARGE MEMORY parameter of the ALTER DATABASE . . . GLOBAL
BUFFERS command is used to specify that global buffers are to be created
in very large memory:

SQL> ALTER DATABASE FILENAME ’MYBIGDB.RDB’
cont> GLOBAL BUFFERS ARE ENABLED
cont> (NUMBER IS 250000,
cont> USER LIMIT IS 500,
cont> LARGE MEMORY IS ENABLED);

It is important that you consider the amount of memory available on your
system before you start using VLM for global buffers. You can use the DCL
command SHOW MEMORY/PHYSICAL to check the availability and usage
of physical memory. This command displays information on how much
memory is used and how much is free. The free memory is available for
VLM global buffers in addition to user applications.

The total number of global buffers per database is limited to 524,288 and
the maximum buffer size is 64 blocks. This yields a global buffer maximum
of 16gb (2,097,152 Alpha pages). This restriction may be relaxed in future
releases of Oracle Rdb.

Refer to the Oracle Rdb7 Guide to Database Performance and Tuning for
additional information about the global buffers feature.

• To enable or disable SHARED MEMORY IS PROCESS RESIDENT or
LARGE MEMORY the process executing the command must be granted
the VMS$MEM_RESIDENT_USER rights identifier. When this feature
is enabled then the process that opens the database must also be granted
the VMS$MEM_RESIDENT_USER identifier. Oracle recommends that the
RMU/OPEN command be used when utilizing this feature.

Examples

Example 1: Creating a single-file database

This command file example creates a single-file database that contains
one table, EMPLOYEES, made up of domains defined within the CREATE
DATABASE statement. The EMPLOYEES table has the same definition as
that in the sample personnel database.

For an example that creates a multifile version of the personnel database, see
the CREATE STORAGE AREA Clause.

6–384 SQL Statements

CREATE DATABASE Statement

SQL> -- By omitting a FILENAME clause, the database root file
SQL> -- takes the file name from the alias:
SQL> CREATE DATABASE ALIAS personnel
cont> --
cont> -- This CREATE DATABASE statement takes default
cont> -- database root file and storage area parameter values.
cont> --
cont> -- Create domains.
cont> -- Note that database elements do not terminate with semicolons.
cont> --
cont> CREATE DOMAIN ID_DOM CHAR(5)
cont> --
cont> CREATE DOMAIN LAST_NAME_DOM CHAR(14)
cont> --
cont> CREATE DOMAIN FIRST_NAME_DOM CHAR(10)
cont> --
cont> CREATE DOMAIN MIDDLE_INITIAL_DOM CHAR(1)
cont> --
cont> CREATE DOMAIN ADDRESS_DATA_1_DOM CHAR(25)
cont> --
cont> CREATE DOMAIN ADDRESS_DATA_2_DOM CHAR(20)
cont> --
cont> CREATE DOMAIN CITY_DOM CHAR(20)
cont> --
cont> CREATE DOMAIN STATE_DOM CHAR(2)
cont> --
cont> CREATE DOMAIN POSTAL_CODE_DOM CHAR(5)
cont> --
cont> CREATE DOMAIN SEX_DOM CHAR(1)
cont> --
cont> CREATE DOMAIN DATE_DOM DATE
cont> --
cont> CREATE DOMAIN STATUS_CODE_DOM CHAR(1)

SQL Statements 6–385

CREATE DATABASE Statement

cont> --
cont> -- Create a table:
cont> --
cont> CREATE TABLE EMPLOYEES
cont> (
cont> EMPLOYEE_ID ID_DOM
cont> CONSTRAINT EMP_EMPLOYEE_ID_NOT_NULL
cont> NOT NULL
cont> NOT DEFERRABLE,
cont> LAST_NAME LAST_NAME_DOM,
cont> FIRST_NAME FIRST_NAME_DOM,
cont> MIDDLE_INITIAL MIDDLE_INITIAL_DOM,
cont> ADDRESS_DATA_1 ADDRESS_DATA_1_DOM,
cont> ADDRESS_DATA_2 ADDRESS_DATA_2_DOM,
cont> CITY CITY_DOM,
cont> STATE STATE_DOM,
cont> POSTAL_CODE POSTAL_CODE_DOM,
cont> SEX SEX_DOM,
cont> CONSTRAINT EMP_SEX_VALUES
cont> CHECK (
cont> SEX IN (’M’, ’F’) OR SEX IS NULL
cont>)
cont> NOT DEFERRABLE,
cont> BIRTHDAY DATE_DOM,
cont> STATUS_CODE STATUS_CODE_DOM,
cont> CONSTRAINT EMP_STATUS_CODE_VALUES
cont> CHECK (
cont> STATUS_CODE IN (’0’, ’1’, ’2’)
cont> OR STATUS_CODE IS NULL
cont>)
cont> NOT DEFERRABLE
cont>)
cont> --
cont> -- End CREATE DATABASE by specifying a semicolon:
cont> ;

Example 2: Creating a database not using the repository

The following example:

• Creates the database root file acct.rdb in the default working directory

• Creates the snapshot file acct.snp in the default working directory

• Does not store the database definition in the repository

• Enables writing to the snapshot file

6–386 SQL Statements

CREATE DATABASE Statement

• Sets the allocation of the snapshot file to 200 pages

SQL> CREATE DATABASE ALIAS acct
cont> FILENAME acct
cont> SNAPSHOT IS ENABLED IMMEDIATE
cont> SNAPSHOT ALLOCATION IS 200 PAGES;

Example 3: Creating a database with the snapshot file disabled

This statement creates a database root file and, to save disk space, disables
snapshot writing and sets the initial allocation size to 1.

SQL> CREATE DATABASE ALIAS PERS
cont> FILENAME personnel
cont> SNAPSHOT IS DISABLED
cont> SNAPSHOT ALLOCATION IS 1 PAGES;

Example 4: Creating a database with ANSI/ISO-style privileges

This statement creates a database in which all ANSI/ISO-style privileges
are granted to the creator of the database, WARRING, and no privileges are
granted to the identifier [*,*], the PUBLIC identifier.

SQL> CREATE DATABASE ALIAS EXAMPLE
cont> FILENAME ansi_test
cont> PROTECTION IS ANSI;
SQL>
SQL> SHOW PROTECTION ON DATABASE EXAMPLE;
Protection on Alias EXAMPLE
[SQL,WARRING]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY,DISTRIBTRAN
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

Example 5: Creating a database with a German collating sequence

This statement creates a database named LITERATURE and specifies a
collating sequence named GERMAN (based on the GERMAN collating sequence
defined in the NCS library).

SQL> CREATE DATABASE FILENAME literature
cont> COLLATING SEQUENCE GERMAN GERMAN;
SQL> SHOW COLLATING SEQUENCE
User collating sequences in schema with filename LITERATURE

GERMAN

SQL Statements 6–387

CREATE DATABASE Statement

Example 6: Creating a database with global buffers

This statement creates a database named parts.rdb.

SQL> CREATE DATABASE ALIAS PARTS FILENAME parts
cont> GLOBAL BUFFERS ARE ENABLED (NUMBER IS 110, USER LIMIT IS 17);

Example 7: Creating a database specifying the database default and national
character sets

The following SQL statements create a database specifying the database
default character set of DEC_KANJI and the national character set of KANJI.
Use the SHOW DATABASE statement to see the database settings.

SQL> SET DIALECT ’SQL99’;
SQL> CREATE DATABASE FILENAME mia_char_set
cont> DEFAULT CHARACTER SET DEC_KANJI
cont> NATIONAL CHARACTER SET KANJI
cont> IDENTIFIER CHARACTER SET DEC_KANJI;
SQL> --
SQL> SHOW CHARACTER SET;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias RDB$DBHANDLE:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

See the SHOW Statement for information on the SHOW CHARACTER SETS
statement.

Example 8: This example demonstrates how to:

• Create a multifile database

• Reserve slots for journal files, storage areas, and row caches

• Restrict access to the database for the current session

• Enable system index compression, row caching, and workload collection

• Disable statistics and cardinality collection

• Specify a default storage area

• Specify ROW as the lock-level default for the database

• Delay closing the database

• Create and assign a row cache to a storage area

6–388 SQL Statements

CREATE DATABASE Statement

• Specify the location of the recovery-unit journal file

SQL> CREATE DATABASE FILENAME sample
cont> SNAPSHOT IS DISABLED
cont> RESERVE 10 JOURNALS
cont> RESERVE 10 STORAGE AREAS
cont> RESERVE 5 CACHE SLOTS
cont> SYSTEM INDEX COMPRESSION IS ENABLED
cont> ROW CACHE IS ENABLED
cont> WORKLOAD COLLECTION IS ENABLED
cont> RESTRICTED ACCESS
cont> STATISTICS COLLECTION IS DISABLED
cont> CARDINALITY COLLECTION IS DISABLED
cont> LOCKING IS ROW LEVEL
cont> DEFAULT STORAGE AREA IS area1
cont> OPEN IS AUTOMATIC (WAIT 5 MINUTES FOR CLOSE)
cont> RECOVERY JOURNAL (LOCATION IS ’SQL_USER1:[DAY]’)
cont> CREATE CACHE cache1
cont> CACHE SIZE IS 1000 ROWS
cont> ROW LENGTH IS 1000 BYTES
cont> CREATE STORAGE AREA area1
cont> CACHE USING cache1;
SQL>
SQL> SHOW DATABASE *;
Default alias:

Oracle Rdb database in file sample
Multischema mode is disabled
Number of users: 50
Number of nodes: 16
Buffer Size (blocks/buffer): 6
Number of Buffers: 20
Number of Recovery Buffers: 20
Snapshots are Disabled
Carry over locks are enabled
Lock timeout interval is 0 seconds
Adjustable lock granularity is enabled (count is 3)
Global buffers are disabled (number is 250, user limit is 5,

page transfer via disk)
Journal fast commit is disabled

(checkpoint interval is 0 blocks,
checkpoint timed every 0 seconds,
no commit to journal optimization,
transaction interval is 256)

AIJ File Allocation: 512
AIJ File Extent: 512
Statistics Collection is DISABLED
Unused Storage Areas: 10
Unused Journals: 10
System Index Compression is ENABLED
Restricted Access
Journal is Disabled
Backup Server: Manual

SQL Statements 6–389

CREATE DATABASE Statement

Log Server: Manual
Overwrite: Disabled
Notification: Disabled
Asynchronous Prefetch is Enabled (depth is 5)
Asynchronous Batch Write is Enabled (clean buffers 5, max buffers 4)
Lock Partitioning is DISABLED
Incremental Backup Scan Optim uses SPAM pages
Shutdown Time is 60 minutes
Unused Cache Slots: 5
Workload Collection is Enabled
Cardinality Collection is Disabled
Metadata Changes are Enabled
Row Cache is Enabled (Sweep interval is 1 second,
No Location)

Detected Asynch Prefetch is Enabled (depth is 4, threshold is 4)
Default Storage Area AREA1
Mode is Open Automatic (Wait 5 minutes for close)
RUJ File Location SQL_USER1:[DAY]
Database Transaction Mode(s) Enabled:

ALL
Dictionary Not Required
ACL based protections

Storage Areas in database with filename sample
RDB$SYSTEM List storage area.
AREA1 Default storage area.

Journals in database with filename sample
No Journals Found

Cache Objects in database with filename sample
CACHE1

SQL> SHOW CACHE cache1;

CACHE1
Cache Size: 1000 rows
Row Length: 1000 bytes
Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Reserved Rows: 20
Sweep Rows: 3000

Reserving Slots for Sequences
No Sweep Thresholds

Allocation: 100 blocks
Extent: 100 blocks

6–390 SQL Statements

CREATE DATABASE Statement

Example 9: Reserving Slots for Sequences

SQL> CREATE DATABASE FILENAME many_sequences
cont> RESERVE 320 SEQUENCES;

Example 10: Creating a Database with a Row Cache

SQL> create database
cont> filename SAMPLE
cont> snapshot is disabled
cont> reserve 10 journals
cont> reserve 10 storage areas
cont> reserve 5 cache slots
cont> system index (compression is enabled, type sorted ranked)
cont> row cache is enabled
cont> workload collection is enabled
cont> restricted access
cont> default storage area is AREA1
cont> open is automatic (wait 5 minutes for close)
cont>
cont> create cache CACHE_AREA1
cont> shared memory is process
cont> row length is 1000 bytes
cont> cache size is 204 rows
cont> checkpoint all rows to backing file
cont>
cont> create storage area AREA1
cont> page format is UNIFORM
cont> cache using CACHE_AREA1
cont> ;
SQL>
SQL> show database *
Default alias:

Oracle Rdb database in file SAMPLE
Multischema mode is disabled
Number of users: 50
Number of nodes: 16
Buffer Size (blocks/buffer): 6
Number of Buffers: 20
Number of Recovery Buffers: 20
Snapshots are Disabled
Carry over locks are enabled
Lock timeout interval is 0 seconds
Adjustable lock granularity is enabled (count is 3)
Global buffers are disabled (number is 250, user limit is 5,

page transfer via disk)
Journal fast commit is disabled

(checkpoint interval is 0 blocks,
checkpoint timed every 0 seconds,
no commit to journal optimization,
transaction interval is 256)

AIJ File Allocation: 512

SQL Statements 6–391

CREATE DATABASE Statement

AIJ File Extent: 512
Statistics Collection is ENABLED
Unused Storage Areas: 10
Unused Journals: 10
Unused Cache Slots: 5
Unused Sequences: 32
Restricted Access
Journal is Disabled
Backup Server: Manual
Log Server: Manual
Overwrite: Disabled
Notification: Disabled
Asynchronous Prefetch is Enabled (depth is 5)
Asynchronous Batch Write is Enabled (clean buffers 5, max buffers 4)
Lock Partitioning is DISABLED
Incremental Backup Scan Optim uses SPAM pages
Shutdown Time is 60 minutes
Workload Collection is Enabled
Cardinality Collection is Enabled
Metadata Changes are Enabled
Row Cache is Enabled
Row cache: No Location
Row cache: checkpoint updated rows to backing file
Detected Asynch Prefetch is Enabled (depth is 4, threshold is 4)
Default Storage Area AREA1
Mode is Open Automatic (Wait 5 minutes for close)
No RUJ File Location
recovery journal buffers are in local memory
Database Transaction Mode(s) Enabled:

ALL
Shared Memory: Process
Large Memory: Disabled
Security Checking is External
System Index Compression is ENABLED
System Index:

Type is sorted ranked
Prefix cardinality collection is enabled

Logminer support is disabled
Galaxy support is disabled
Prestarted transactions are enabled
Dictionary Not Required
ACL based protections

Storage Areas in database with filename SAMPLE
AREA1 Default storage area
RDB$SYSTEM List storage area.

Journals in database with filename SAMPLE
No Journals Found

Cache Objects in database with filename SAMPLE
CACHE_AREA1

6–392 SQL Statements

CREATE DOMAIN Statement

CREATE DOMAIN Statement

Creates a domain definition.

A domain defines the set of values, character set, collating sequence, and
formatting clause that a column in a table can have. The CREATE DOMAIN
statement specifies the set of values by associating a data type with a domain
name.

There are two ways to specify a domain definition:

• With a domain name, data type, and any combination of the following
optional clauses:

Default value

Stored name

Collating sequence

Formatting clauses such as EDIT STRING or QUERY HEADER

• With the FROM clause and a repository path name that refers to a field
already defined in the repository

When the CREATE DOMAIN statement executes, SQL adds the domain
definition to the database.

If you attached to the database with the PATHNAME specification, the domain
definition is also added to the repository.

You can refer to a domain instead of an SQL data type in the CREATE and
ALTER TABLE statements, and in formal parameter declarations in functions
and procedures. If the domain has to change, you need only change that one
domain definition (using the ALTER DOMAIN statement) to change all the
tables. This ability makes it easier to keep applications consistent.

A domain can be referenced in the following locations:

• CREATE, ALTER and DROP DOMAIN statements

• CREATE and ALTER TABLE statements as the data type for a column

• CREATE and ALTER MODULE statements as the data type of a routine
parameter, or the data type of declared variable

• CREATE FUNCTION statement as the data type of a function parameter
or function result

SQL Statements 6–393

CREATE DOMAIN Statement

• CREATE PROCEDURE statement as the data type of a procedure
parameter

• CREATE and ALTER SYNONYM statement as the base object for a
synonym

• as the datatype of a CAST expression

• as a data type of a DECLARE variable statement in interactive SQL

• as the source in the EDIT USING clause of the SELECT and PRINT
statements in interactive SQL. The EDIT STRING is inherited from that
domain.

Environment

You can use the CREATE DOMAIN statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE DOMAIN

<domain-name>
STORED NAME IS <stored-name>

IS data-type
AS data-type DEFAULT value-expr

COLLATING SEQUENCE IS <collation-name>
NO COLLATING SEQUENCE

domain-constraint sql-and-dtr-clause

FROM <path-name>
DATABASE ALIAS <alias>

6–394 SQL Statements

CREATE DOMAIN Statement

domain-name =

<name-of-domain>
<schema-name> .
<alias>

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
LIST OF BYTE VARYING
DECIMAL
NUMERIC (<n>)

, <n>
FLOAT

(<n>)
REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
CHARACTER (<n>) CHARACTER SET char-set-name
CHAR VARYING
CHARACTER VARYING
VARCHAR (<n>)
VARCHAR2 CHARACTER SET char-set-name
LONG VARCHAR
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
RAW (<n>)
LONG

RAW

SQL Statements 6–395

CREATE DOMAIN Statement

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

interval-qualifier =

YEAR prec
TO MONTH

MONTH prec
DAY prec

TO HOUR
MINUTE
SECOND frac

HOUR prec
TO MINUTE

SECOND frac
MINUTE prec

TO SECOND frac
SECOND seconds-prec

literal =

numeric-literal
string-literal
date-time-literal
interval-literal

domain-constraint =

CHECK (predicate)
constraint-attributes

6–396 SQL Statements

CREATE DOMAIN Statement

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS <literal>
DATATRIEVE

NO QUERY HEADER
NO EDIT STRING
NO QUERY NAME FOR DTR
NO DEFAULT VALUE DATATRIEVE
COMMENT IS <quoted-string>

/

Arguments

char-data-types
A character type. See Section 2.3 for more information on data types.

character-set-name
A valid character set.

COLLATING SEQUENCE IS collation-name
Specifies a collating sequence for the named domain.

The OpenVMS National Character Set (NCS) utility provides a set of
predefined collating sequences and also lets you define collating sequences
of your own. The COLLATING SEQUENCE clause accepts both predefined
and user-defined NCS collating sequences.

Before you use the COLLATING SEQUENCE clause in a CREATE DOMAIN
statement, you must first specify the NCS collating sequence for SQL using
the CREATE COLLATING SEQUENCE statement. The sequence-name
argument in the COLLATING SEQUENCE clause must be the same as the
sequence-name in the CREATE COLLATING SEQUENCE statement.

COMMENT IS ’string’
Adds a comment about the domain. SQL displays the text of the comment
when it executes a SHOW DOMAIN statement. Enclose the comment in single
quotation marks (’) and separate multiple lines in a comment with a slash
mark (/).

SQL Statements 6–397

CREATE DOMAIN Statement

DATABASE ALIAS alias
In the FROM path-name clause, specifies the name for an attach to a particular
database. SQL adds the domain definition to the database referred to by the
alias.

If you do not specify an alias, SQL adds the domain definition to the default
database. See Section 2.2.1 for more information on default databases and
aliases.

date-time-data-types
A data type that specifies a date, time, or interval. See Section 2.3.2 for more
information about date-time data types.

DEFAULT value-expr
Provides a default value for a domain.

You can use any value expression including subqueries, conditional, character,
date/time, and numeric expressions as default values. See Section 2.6 for more
information about value expressions.

For more information about NULL, see Section 2.6.1 and the Usage Notes
following this Arguments list.

The value expressions described in Section 2.6 include DBKEY and aggregate
functions. However, the DEFAULT clause is not a valid location for referencing
a DBKEY or an aggregate function. If you attempt to reference either, you
receive a compile-time error.

If you do not specify a DEFAULT for a column, it inherits the DEFAULT from
the domain. If you do not specify a default for either the column or domain,
SQL assigns NULL as the default value.

domain-constraint
Creates a constraint for the named domain.

Specify a domain constraint when you create a domain to limit which values
can be stored in columns based on the domain. Domain constraints specify
that columns based on the domain contain only certain data values or that
data values can or cannot be null.

Use the CHECK clause to specify that a value must be within a specified range
or that it matches a list of values. When you specify a CHECK clause for a
domain constraint, you ensure that all values stored in columns based on the
domain are checked consistently.

6–398 SQL Statements

CREATE DOMAIN Statement

domain-name
The name of a domain you want to create. The domain name must be unique
among domain names in the schema. You can qualify it with an alias or (in
multischema databases only) a schema name.

FROM path-name
Specifies the repository path name of a repository field definition. SQL creates
the domain using the definition from this field and gives the domain the name
of the field definition.

Creating a domain based on a repository domain definition is useful when
many applications share the same definition. Changes to the common
definition can be automatically reflected in all applications that use it.

You can create a domain using the FROM path-name clause only if the field
definition in the repository was originally created using the repository CDO
utility. For instance, you cannot create a domain using the FROM path-
name clause if the definition was created in the repository as part of an SQL
session. Oracle Rdb requires that the field names referenced in the VALID IF
expression of the CDO utility match the name of the global field being defined
or changed.

Note

Changes by other users or applications to the field definition in
the repository will affect the domain definition once the database
is integrated to match the repository with an INTEGRATE
DATABASE . . . ALTER FILES statement.

You can use the FROM path-name clause only if the database was attached
specifying PATHNAME. You can specify either a full repository path name or a
relative repository path name.

You cannot specify formatting clauses when you use the FROM path-name
form of the CREATE DOMAIN statement.

You cannot use the FROM path-name clause when embedding a CREATE
DOMAIN statement in a CREATE DATABASE statement.

IS data-type
AS data-type
A valid SQL data type. See Section 2.3 for more information on data types.

SQL Statements 6–399

CREATE DOMAIN Statement

NO COLLATING SEQUENCE
Specifies that this domain uses the standard default collating sequence, that is,
ASCII. Use the NO COLLATING SEQUENCE clause to override the collating
sequence defined for the database in the CREATE DATABASE or ALTER
DATABASE statement.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. See Section 2.5 for more
information on formatting clauses.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a domain created in a
multischema database. The stored name lets you access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for a domain in a database that does not allow multiple
schemas. For more information about stored names, see Section 2.2.18.

Usage Notes

• In general, you should use domains when creating tables because domains:

Ensure that similar columns in multiple tables comply to one standard.
For example, if you define the columns using the domain ID_DOM, the
data type for all these columns will be CHAR(5).

Let you change the data type or formatting for all columns defined
using a domain, by changing the domain itself. For example, if you
want to change the data type for the domain POSTAL_CODE_DOM
from CHAR(5) to CHAR(10), you need alter only the data type for
POSTAL_CODE_DOM. You do not have to alter the data type for the
column POSTAL_CODE in the tables COLLEGES and EMPLOYEES.

Let you specify default values for all columns that were defined
using a domain. For example, you can use a value such as NULL or
Not Applicable that clearly demonstrates that no data was inserted
into a column based on that domain. If a column usually contains a
particular value, you can use that value as the default. For example, if
most company employees live in the same state, you could make that
state the default value for the STATE_DOM column.

A default value specified for a column overrides a default value
specified for the domain.

6–400 SQL Statements

CREATE DOMAIN Statement

• The data type of a value specified in the DEFAULT clause must be the
same data type as the column in which it is defined. If you forget to specify
the data type, SQL issues an error message, as shown in the following
example:

SQL> CREATE DOMAIN TIME_DOM IS TIME (2) DEFAULT ’00:00:00.00’ ;
%SQL-F-DEFVALINC, You specified a default value for TIME_DOM which is
inconsistent with its data type
SQL> CREATE DOMAIN TIME_DOM IS TIME (2) DEFAULT TIME ’00:00:00.00’ ;

• You might not want to use domains when you create tables if:

Your application must be compatible with Oracle Database.

You are creating intermediate result tables. It takes time to plan what
the domains are in the database and to define them. Intermediate
result tables might not warrant this effort.

• It is possible when using the repository to define field structures that are
not acceptable to Oracle Rdb.

The repository is intended as a generic data repository that can hold data
structures available to many layered products and languages.

These data structures may not always be valid when applied to the
relational data model used by Oracle Rdb.

The following are some of the common incompatibilites between the data
structures of the repository and Oracle Rdb.

%CDD-E-PRSMISSNG, attribute value is missing

This error can occur when a field definition in the repository contains a
FILLER clause.

%CDD-E-INVALID_RDB_DTY, datatype of field is not supported by
Oracle Rdb

This error can occur when a field definition in the repository contains
an ARRAY clause.

%CDD-E-HAS_DIMENSION, Oracle Rdb fields cannot have dimension

This error can occur when a field definition in the repository contains
an OCCURS clause.

• You can specify the national character data type by using the NCHAR,
NATIONAL CHAR, NCHAR VARYING, or NATIONAL CHAR VARYING
data types. The national character data type is defined by the database
national character set when the database is created. See Section 2.3.1 for
more information regarding national character data types.

SQL Statements 6–401

CREATE DOMAIN Statement

• You can specify the length of the data type in characters or octets.
By default, data types are specified in octets. By preceding the
CREATE DOMAIN statement with the SET CHARACTER LENGTH
’CHARACTERS’ or SET DIALECT ’MIA’ or SET DIALECT ’SQL99’
statement, you change the length to characters. For more information,
see the SET CHARACTER LENGTH Statement and the SET DIALECT
Statement.

• If you create a character type domain without specifying a character set
then it will be assigned with the database default character set.

• When creating a domain constraint, the predicate cannot contain
subqueries and cannot refer to another domain.

• You can only specify one constraint for each domain.

• The CHECK constraint syntax can reference the VALUE keyword or the
domain name. For example:

SQL> -- The CHECK constraint can reference the VALUE keyword.
SQL> --
SQL> CREATE DOMAIN D1 INTEGER
cont> CHECK (VALUE > 10)
cont> NOT DEFERRABLE;
SQL> SHOW DOMAIN D1;
D1 INTEGER
Valid If: (VALUE > 10)
SQL> ROLLBACK;
SQL> --
SQL> -- The CHECK constraint can reference the domain name.
SQL> --
SQL> CREATE DOMAIN D1 INTEGER
cont> CHECK (D1 > 10)
cont> NOT DEFERRABLE;
SQL> SHOW DOMAIN D1
D1 INTEGER
Valid If: (D1 > 10)

Examples

Example 1: Creating a domain for a standard EMPLOYEE_ID definition

The following example creates the domain ID_DOM, which will be a standard
definition of columns for the employee ID:

SQL> CREATE DOMAIN ID_DOM CHAR(5)
SQL> COMMENT IS
cont> ’standard definition of employee id’;

6–402 SQL Statements

CREATE DOMAIN Statement

Example 2: Creating a domain for standard date

The following example creates the domain STANDARD_DATE_DOM, which
includes the edit string DD-MMM-YYYY:

SQL> CREATE DOMAIN STANDARD_DATE_DOM DATE
cont> EDIT STRING IS ’DD-MMM-YYYY’
SQL> COMMENT IS
cont> ’standard definition for complete dates’;

Example 3: Creating domains with default values

The following example creates two domains: ADDRESS_DATA2_DOM and
WORK_STATUS_DOM. The ADDRESS_DATA2_DOM domain has a default
value of NULL; the WORK_STATUS_DOM domain has a default value of 1 to
signify full-time work status.

SQL> CREATE DOMAIN ADDRESS_DATA2_DOM CHAR(20)
cont> DEFAULT NULL;
SQL> --
SQL> CREATE DOMAIN WORK_STATUS_DOM SMALLINT
cont> DEFAULT 1;

Example 4: Basing a domain on a repository field definition

The following example illustrates using the repository as a source for the
definition in a CREATE DOMAIN statement:

$ SQL$
SQL> ATTACH ’PATHNAME CDD$TOP.SQL.RDB.TEST.DATE’;
SQL> CREATE DOMAIN FROM DOMAIN_TEST;
SQL> SHOW DOMAIN
User domains in database with pathname

SYS$COMMON:[CDDPLUS]SQL.RDB.TEST.DATE;1
DOMAIN_TEST BIGINT

Example 5: Creating a domain with a collating sequence

The following example creates a domain with the predefined NCS collating
sequence SPANISH. Note that you must first execute the CREATE
COLLATING SEQUENCE statement:

SQL> --
SQL> CREATE COLLATING SEQUENCE SPANISH SPANISH;
SQL> CREATE DOMAIN LAST_NAME_SPANISH CHAR(14)
cont> COLLATING SEQUENCE IS SPANISH;
SQL> --
SQL> SHOW DOMAIN LAST_NAME_SPANISH
LAST_NAME_SPANISH CHAR(14)
Collating sequence: SPANISH

SQL Statements 6–403

CREATE DOMAIN Statement

Example 6: Creating a domain using the database default character set

For each of the following examples, assume the database was created specifying
the database default character set as DEC_KANJI and the national character
set as KANJI.

The following example creates the domain DEC_KANJI_DOM using the
database default character set:

SQL> SHOW CHARACTER SET;
Default character set is DEC_KANJI
National character set is KANJI
Identifier character set is DEC_KANJI
Literal character set is DEC_KANJI

Alias RDB$DBHANDLE:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> CREATE DOMAIN DEC_KANJI_DOM CHAR(8);
SQL> SHOW DOMAIN
User domains in database with filename MIA_CHAR_SET
DEC_KANJI_DOM CHAR(8)

Because the CREATE DOMAIN statement does not specify a character set,
Oracle Rdb defines the domain using the database default character set. The
database default character set does not display with the SHOW DOMAIN
statement.

An equivalent statement to the previous CREATE DOMAIN statement is:

SQL> CREATE DOMAIN DEC_KANJI_DOM CHAR(8) CHARACTER SET DEC_KANJI;

Example 7: Creating a domain using the national character set

The following example creates the domain KANJI_DOM using the NCHAR
data type to designate use of the national character set:

SQL> CREATE DOMAIN KANJI_DOM NCHAR(8);
SQL> SHOW DOMAIN
User domains in database with filename MIA_CHAR_SET
DEC_KANJI_DOM CHAR(8)
KANJI_DOM CHAR(8)

KANJI 8 Characters, 16 Octets

When a character set other than the default is specified, the SHOW DOMAIN
statement displays the character set associated with the domain.

Two statements equivalent to the previous CREATE DOMAIN statement are:

SQL> CREATE DOMAIN KANJI_DOM NATIONAL CHAR(8);
SQL> CREATE DOMAIN KANJI_DOM CHAR(8) CHARACTER SET KANJI;

6–404 SQL Statements

CREATE DOMAIN Statement

Example 8: Creating a domain constraint

The following example creates a domain constraint:

SQL> -- The SET DIALECT ’SQL99’ statement sets the default date format
SQL> -- to the ANSI/ISO SQL standard format.
SQL> --
SQL> SET DIALECT ’SQL99’;
SQL> --
SQL> -- The following domain ensures that any dates inserted into the database
SQL> -- are later than January 1, 1900:
SQL> --
SQL> CREATE DOMAIN TEST_DOM DATE
cont> DEFAULT NULL
cont> CHECK (VALUE > DATE’1900-01-01’ OR
cont> VALUE IS NULL)
cont> NOT DEFERRABLE;
SQL>
SQL> -- The following example creates a table with one column based on the
SQL> -- domain TEST_DOM:
SQL> --
SQL> CREATE TABLE DOMAIN_TEST
cont> (DATE_COL TEST_DOM);
SQL> --
SQL> -- SQL returns an error if you attempt to insert data that does not
SQL> -- conform to the domain constraint:
SQL> --
SQL> INSERT INTO DOMAIN_TEST
cont> VALUES (DATE’1899-01-01’);
%RDB-E-NOT_VALID, validation on field DATE_COL caused operation to fail

SQL Statements 6–405

CREATE FUNCTION Statement

CREATE FUNCTION Statement

Creates an external function as a schema object in an Oracle Rdb database.

The CREATE FUNCTION statement is documented under the CREATE
ROUTINE Statement. For complete information on creating an external
function definition, see the CREATE ROUTINE Statement.

6–406 SQL Statements

CREATE INDEX Statement

CREATE INDEX Statement

Creates an index for a table. An index allows direct access to the rows in the
table to avoid sequential searching.

You define an index by listing the columns in a table that make up the index.
You can define more than one index for a table. The index can be made up
of one column, or two or more columns. An index made up of two or more
columns is called a multisegmented index.

Optional arguments to the CREATE INDEX statement let you specify:

• The type of index structure (hashed, sorted nonranked, or sorted ranked)

• The names of a storage area or storage areas that contain the index

• Physical characteristics of a sorted index structure, such as index node size
and the initial fullness percentage of each node

• Compression characteristics, including compressed key suffixes for text
indexes and integer column compression for smallint or integer numeric
columns

• Compression of space characters from text data types and of binary zeros
from nontext data types

• Thresholds for the logical storage areas that contain the index

• A comment for the index definition

• Whether logging to the .ruj and .aij files is enabled or disabled for the
create index operation

Environment

You can use the CREATE INDEX statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 6–407

CREATE INDEX Statement

Format

CREATE INDEX <index-name>
UNIQUE

ON <table-name>
STORED NAME IS <stored-name>

(<column-name>

)
ASCENDING SIZE IS <n>
DESCENDING MAPPING VALUES <l> TO <h>

,

type-clause index-attributes-clause

index-store-clause

type-clause =

TYPE IS HASHED
ORDERED
SCATTERED

SORTED
RANKED

DUPLICATES ARE COMPRESSED

sorted-index-clause

sorted-index-clause =

NODE SIZE <number-bytes>
PERCENT FILL <percentage>
USAGE UPDATE

QUERY

6–408 SQL Statements

CREATE INDEX Statement

index-attributes-clause =

ENABLE COMPRESSION rlc-attr
DISABLE COMPRESSION
threshold-clause
LOGGING
NOLOGGING
COMMENT IS ’<string>’

/
PREFIX CARDINALITY COLLECTION IS ENABLED

ENABLED FULL
DISABLED

MAINTENANCE IS DISABLED
ENABLED

DEFERRED
IMMEDIATE

rlc-attr =

(MINIMUM RUN LENGTH <n>)

index-store-clause =

STORE

IN area-spec
USING (<column-name>)

,

IN area-spec

WITH LIMIT OF (<literal>)
,

OTHERWISE IN area-spec

SQL Statements 6–409

CREATE INDEX Statement

threshold-clause =

THRESHOLD IS (<val1>)
OF

THRESHOLDS ARE
OF

(<val1>)
, <val2>

, <val3>

area-spec =

<area-name>
(threshold-clause)

LOGGING
NOLOGGING
PARTITION <name>
COMMENT IS ’string’

/
,

Arguments

ASCENDING
An optional keyword that causes SQL to create ascending index segments.
If you omit the ASCENDING or DESCENDING keyword, ascending is the
default.

BUILD ALL PARTITIONS
This clause operates on an index in build-pending state (created using
MAINTENANCE IS ENABLED DEFERRED) and builds all incomplete
partitions. If the index is not in build-pending state then the statement
completes successfully with a warning.

No other clauses may appear in the same ALTER INDEX statement.

BUILD PARTITION partition-name
This clause operates on an index in build-pending state (created using
MAINTENANCE IS ENABLED DEFERRED) and builds the named partition.
If the index is not in build-pending state then the statement completes
successfully with a warning.

No other clauses may appear in the same ALTER INDEX statement.

6–410 SQL Statements

CREATE INDEX Statement

column-name
The name of the column or columns that make up the index key.

You can create a multisegmented index key by naming two or more columns,
which are joined to form the index key. All the columns must be part of the
same table. Separate multiple column names with commas.

Note

If column-name refers to a column defined as CHAR, VARCHAR or
LONG VARCHAR data type, the size of the column must be less than
or equal to 254 characters, or the SIZE IS clause must be used.

COMMENT IS ’string ’

Adds a comment about the storage map definition for the index. SQL displays
the text of the comment when it executes a SHOW INDEXES statement.
Enclose the comment in single quotation marks (’) and separate multiple lines
in a comment with a slash mark (/).

DESCENDING
An optional keyword that causes SQL to create descending index segments.
If you omit the ASCENDING or DESCENDING keyword, ascending is the
default.

DISABLE COMPRESSION
Disables compression indexes.

If compression is disabled, no form of compression is used for hashed indexes,
and prefix compression or suffix compression is used for sorted indexes. Prefix
compression is the compression of the first bytes of an index key that are
common in consecutive index keys. Prefix compression saves space by not
storing these common bytes of information. Conversely, suffix compression
is the compression of the last bytes from adjacent index keys. These bytes are
not necessary to guarantee uniqueness.

You cannot enable index compression using the ALTER INDEX statement once
you specified the DISABLE COMPRESSION clause of the CREATE INDEX
statement.

Index compression is disabled by default.

SQL Statements 6–411

CREATE INDEX Statement

DUPLICATES ARE COMPRESSED
Specifies that duplicates are compressed. If a sorted ranked index allows
duplicate entries, you can store many more records in a small space when you
compress duplicates, therefore, minimizing I/O and increasing performance.
Oracle Rdb uses patented technology called byte-aligned bitmap compression to
represent the dbkeys for the duplicate entries instead of chaining the duplicate
entries together with uncompressed dbkeys.

Duplicates are compressed by default if you specify RANKED without
specifying the DUPLICATES ARE COMPRESSED clause.

You cannot use the DUPLICATES ARE COMPRESSED clause when you create
nonranked indexes or when you specify the UNIQUE keyword.

See the Oracle Rdb Guide to Database Design and Definition for more
information on sorted ranked B-tree indexes.

ENABLE COMPRESSION
Specifies that sorted and hashed indexes are stored in a compressed form.

If compression is enabled, Oracle Rdb uses run-length compression to
compress a sequence of space characters (octets) from text data types
and binary zeros from nontext data types. Different character sets have
different representations of the space character. Oracle Rdb compresses the
representation of the space character for the character sets of the columns
comprising the index values.

You cannot disable index compression using the ALTER INDEX statement once
you specified the ENABLE COMPRESSION clause of the CREATE INDEX
statement.

For more information on compressed indexes, see the Oracle Rdb Guide to
Database Design and Definition.

IN area-name
Associates the index directly with a single storage area. All entries in the
index are stored in the area you specify.

index-name
The name of the index. You can use this name to refer to the index in other
statements. You must qualify the index name with the authorization identifier
if the schema is not the default schema. When choosing a name, specify a valid
name. See Section 2.2 for more information on valid, user-supplied names.

6–412 SQL Statements

CREATE INDEX Statement

index-store-clause
A storage map definition for the index. You can specify a store clause for
indexes in a multifile database only. The STORE clause in a CREATE INDEX
statement allows you to specify which storage area files are used to store the
index entries:

• All index entries can be associated with a single storage area.

• Index entries can be systematically distributed, or partitioned, among
several storage areas by specifying upper limits on the values for a key in
a particular storage area.

If you omit the storage map definition, the default is to store all the entries for
an index in the main default storage area.

You should define a storage area for an index that matches the storage map for
the table with which it is associated.

In particular, under the following conditions, the database system stores the
index entry for a row on or near the same data page that contains the actual
row:

• The storage areas for a table have a mixed page format.

• You specify an identical store clause for the index as exists in the storage
map for the table.

• The storage map for the table also names the index in the PLACEMENT
VIA INDEX clause.

Such coincidental clustering of indexes and rows can reduce I/O operations.
With hashed indexes and coincidental clustering, the database system can
retrieve rows for exact-match queries in one I/O operation.

For sorted indexes, specifying an identical storage map reduces I/O contention
on index nodes.

LOGGING
NOLOGGING
The LOGGING clause specifies that index nodes and hash buckets be logged
when written to the database. Logging includes writing data and management
records to the recovery-unit journal file (.ruj) and after-image journal files
(.aij). When the NOLOGGING clause is specified, then only a small number
of management records are logged in the recovery-unit journal file (.ruj) and
after-image journal files (.aij). See the Usage Notes below for more information.

SQL Statements 6–413

CREATE INDEX Statement

LOGGING and NOLOGGING can be specified per storage area (partition)
or as a default for the CREATE INDEX statement. The LOGGING and
NOLOGGING clauses are mutually exclusive; specify only one. The LOGGING
clause is the default.

MAINTENANCE IS DISABLED
An index created using this clause is not maintained. The index definition
serves only as a template.

MAINTENANCE IS ENABLED DEFERRED
An index created using this clause does not contain index keys for the current
rows in the table. Until this index is built (using ALTER INDEX . . . BUILD),
the index is placed in a build-pending state. Any table with a build-
pending index can not be updated using the INSERT, DELETE, or UPDATE
statements.

MAINTENANCE IS ENABLED IMMEDIATE
This is the default behavior for CREATE INDEX.

MAPPING VALUES l to h
A compression clause for all-numeric columns that translates the column
values into a compact, encoded form. You can mix mapped and unmapped
columns, but the most storage space is gained by building indexes of multiple
columns of data type SMALLINT or INTEGER. Oracle Rdb attempts to
compress all such columns into the smallest possible space.

The l (low) through h (high) specifies the range of integers as the value of the
index key.

The valid range of the compressed key (l through h):

• Cannot be zero

• Is limited to �
31 – 4 x ��

�����

If the value of the key is less than zero or greater than �
31 – 4 x ��

�����,
Oracle Rdb signals an exception.

MINIMUM RUN LENGTH
Specifies the minimum length of the sequence that Oracle Rdb should
compress. You cannot alter this value once you set it.

If you specify MINIMUM RUN LENGTH 2, Oracle Rdb compresses sequences
of two or more spaces or of two or more binary zeros for single-octet character
sets, and compresses one space or one binary zero for multi-octet character
sets. As it compresses the sequences, Oracle Rdb replaces the sequence with
the value of the minimum run length plus 1 byte. If many of the index values

6–414 SQL Statements

CREATE INDEX Statement

contain one space between characters in addition to trailing spaces, use a
minimum run length of 2, so that you do not inadvertently expand the index
beyond the 255-byte limit. If you inadvertently expand the index beyond 255
bytes during index creation, Oracle Rdb returns a warning message.

The default minimum run length value is 2. Valid values for the minimum
run length range from 1 to 127. Oracle Rdb determines which characters are
compressed.

NODE SIZE number-bytes
The size in bytes of each index node.

The number and level of the resulting index nodes depend on:

• This number-bytes value

• The number and size of the index keys

• The value specified in the PERCENT FILL or USAGE clauses

If you omit the NODE SIZE clause, the default value is:

• 430 bytes if the total index key size is 120 bytes or less

• 860 bytes if the total index key size is more than 120 bytes

The index key size is the number of bytes it takes to represent the column
value in the sorted index.

The valid range for a user-specified index node size (in bytes) can be estimated
with the following formula:

3 (key length � overhead) � 32) � node size � 32767

OTHERWISE IN area-name
For partitioned storage maps only, specifies the storage area that is used as
the overflow partition. An overflow partition is a storage area that holds
any values that are higher than those specified in the last WITH LIMIT TO
clause. An overflow partition holds those values that ‘‘overflow’’ the partitions
that have specified limits.

PARTITION name
Names the partition. The name can be a delimited identifier. Partition names
must be unique within the index. If you do not specify this clause, Oracle Rdb
generates a default name for the partition.

SQL Statements 6–415

CREATE INDEX Statement

PERCENT FILL percentage
Specifies the initial fullness percentage for each node in the index structure
being changed. The valid range is 1 percent to 100 percent. The default is 70
percent.

Both the PERCENT FILL and USAGE clauses specify how full an index node
should be initially. Specify either PERCENT FILL or USAGE, but not both.

PREFIX CARDINALITY COLLECTION IS DISABLED
This setting disables the cardinality collection and, instead, uses a fixed scaling
algorithm which assumes a well balanced index tree.

PREFIX CARDINALITY COLLECTION IS ENABLED
This is the default behavior for CREATE INDEX. The Oracle Rdb optimizer
collects approximate cardinality values for the index columns to help in future
query optimization. Note that no extra I/O is incurred to collect these values
and, therefore, adjacent key values from other index nodes can not be checked.
Hence, some inaccuracy may be seen for these indexes. In most cases, this is
adequate for query optimizations.

PREFIX CARDINALITY COLLECTION IS ENABLED FULL
This setting requests that extra I/O be performed, if required, to ensure that
the cardinality values reflect the key value changes of adjacent index nodes.

REBUILD ALL PARTITIONS
This clause combines the TRUNCATE and BUILD actions into a single
function. No other clauses may appear in the same ALTER INDEX statement.

REBUILD PARTITION partition-name
This clause combines the TRUNCATE and BUILD actions into a single
function for the named partition. No other clauses may appear in the same
ALTER INDEX statement.

SIZE IS n
A compression clause for text or varying text index keys that limits the number
of characters used for retrieving data. The n specifies the number of characters
of the key that are used in the index.

Note

Although you can create a SIZE IS index and specify the UNIQUE
clause, truncating the index key values may make the key values non-
unique. In this case, the index definition or insert or update statements
fail.

6–416 SQL Statements

CREATE INDEX Statement

STORE IN area-name
Associates the index directly with a single storage area. All entries in the
index are stored in the area you specify.

STORE USING (column-name-list)
Specifies columns whose values are used as limits for partitioning the index
across multiple storage areas. You cannot name columns not specified as index
key segments.

If the index key is multisegmented, you can include some or all the columns
that are joined to form the index key. You must specify the columns in the
order in which they were specified when the index key was defined. If you only
include a subset of the columns, you must include the leading segments of the
multisegmented index.

For example, if a CREATE INDEX statement specifies a multisegmented index
based on the columns LAST_NAME, FIRST_NAME, and MIDDLE_INITIAL,
then the USING clause must include the first segment LAST_NAME, or the
first two segments, LAST_NAME, and FIRST_NAME, or all the segments of
the index. This is true for sorted indices only.

The database system uses the values of the columns specified in the STORE
USING clause as a key to determine in which storage area an index entry
associated with a new table row belongs.

There is no restriction for hashed scattered indexes. For hashed ordered
indexes, all segments listed, except the last segment can be included. Also,
HASHED ORDERED indexes have further restrictions on the data type of the
final column; it must be a date/time or integer numeric data type.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access an index created in a
multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for an index in a database that does not allow multiple
schemas. For more information about stored names, see Section 2.2.18.

table-name
The name of the table that includes the index. The table must be in the same
schema as the index.

SQL Statements 6–417

CREATE INDEX Statement

threshold-clause
Specifies one, two, or three default threshold values for logical areas that
contain the index in storage areas with uniform page formats. By setting
threshold values, you can make sure that Oracle Rdb does not overlook a page
with sufficient space to store compressed data. The threshold values (val1,
val2, and val3) represent a fullness percentage on a data page and establish
three possible ranges of guaranteed free space on the data pages. For more
information about logical area thresholds, see the CREATE STORAGE MAP
Statement.

If you use data compression, you should use logical area thresholds to obtain
optimum storage performance.

You cannot specify the thresholds for the storage map attribute for any
area that is a mixed page format. If you have a mixed page format, set the
thresholds for the storage area using the ADD STORAGE AREA or CREATE
STORAGE AREA clause of the ALTER DATABASE, CREATE DATABASE, or
IMPORT statements.

For more information about SPAM pages, see the Oracle Rdb Guide to
Database Design and Definition.

TRUNCATE ALL PARTITIONS
This clause operates in a similar way to TRUNCATE TABLE, but just on one
index. The index is automatically set to MAINTENANCE IS ENABLED
DEFERRED (i.e. build-pending state) if it was currently ENABLED
IMMEDIATE. Otherwise is stays in a disabled state.

No other clauses may appear in the same ALTER INDEX statement.

TRUNCATE PARTITION partition-name
This clause operates on just the named index partition. The index is
automatically set to MAINTENANCE IS ENABLED DEFERRED (that is,
build-pending state) if it was currently ENABLED IMMEDIATE. Otherwise is
stays in a disabled state.

No other clauses may appear in the same ALTER INDEX statement.

TYPE IS HASHED ORDERED
TYPE IS HASHED SCATTERED
Specifies that the index is a hashed index. If you specify HASHED, you
cannot use the NODE SIZE, PERCENT FILL, or USAGE clauses. You can,
however, specify if the data is ORDERED or SCATTERED. SCATTERED is the
default.

6–418 SQL Statements

CREATE INDEX Statement

The TYPE IS HASHED SCATTERED clause is appropriate in situations where
data is not evenly distributed across storage areas. This option places a record
in a page that is chosen by applying a hashing algorithm to the index key. As
a result, the record distribution pattern is not guaranteed to be even; therefore,
some pages may be chosen more often than others. The TYPE IS HASHED
SCATTERED clause is the default and is recommended unless your data meets
the following criteria for the TYPE IS HASHED ORDERED clause: 1

• The last column of the index key must be one of the following data types:

– TINYINT

– SMALLINT

– INTEGER

– BIGINT 1

– DATE (both ANSI and VMS) 1

– TIME 1

– TIMESTAMP 1

– INTERVAL 1

• The index must be ascending.

• The index must not be compressed or have mapping values.

The TYPE IS HASHED ORDERED clause is ideal for applications where the
index key values are evenly distributed across a given range. This places a
record in a page derived by applying an ordered hashing algorithm to the index
key. As a result, the distribution pattern is guaranteed to follow the index key
distribution. In addition, if you know the range of values, you can size the
storage area and pages to minimize overflows. If the index key values are not
evenly distributed, use the TYPE IS HASHED SCATTERED clause.

Hashed indexes must be stored in storage areas created with mixed page
format, which means they are valid only in multifile databases.

Hashed indexes provide fast and direct access to specific rows and are effective
mainly for queries that specify an exact-match retrieval on a column or
columns that are also the key to a hashed index. (For instance, SELECT
EMPLOYEE_ID FROM EMPLOYEES WHERE EMPLOYEE_ID = "00126", makes effective
use of a hashed index with EMPLOYEE_ID as the index key.)

1 All 64 bits are used when these data types are used.

SQL Statements 6–419

CREATE INDEX Statement

In a hashed indexing scheme, the index key value is converted mathematically
to a relative page number in the storage area of a particular table. A hash
bucket is a data structure that maintains information about an index key,
and a list of internal pointers, called database keys or dbkeys, to rows that
contain the particular value of the index key. To find a row using the hashed
index, the database system searches the hash bucket, finds the appropriate
dbkey, and then fetches the table row.

Hashed indexes are most effective for random, direct access when the query
supplies the entire index key on which the hashed index is defined. For these
types of access, I/O operations can be significantly reduced. This is particularly
useful for tables with many rows and large indexes. For example, to retrieve
a row using a sorted index that is four levels deep, the database system may
need to perform five I/O operations. By using hashing, the number of I/O
operations is reduced to two, at most.

You can define a hashed index and a sorted index for the same column. Then,
depending on the type of query you use, the Oracle Rdb optimizer chooses
the appropriate method of retrieval. For example, if your query contains an
exact-match retrieval, the optimizer uses hashed index access. If your query
contains a range retrieval, the optimizer uses the sorted index. This strategy
incurs the additional overhead of maintaining two indexes, therefore, you
need to consider the advantages of fast retrieval against the disadvantages of
updating two indexes for every change to data.

See the Oracle Rdb Guide to Database Design and Definition for a detailed
discussion of the relative advantages of hashed and sorted indexes.

TYPE IS SORTED
Specifies that the index is a sorted, nonranked (B-tree) index. If you omit
the TYPE IS clause, SORTED is the default. Sorted indexes improve the
performance of queries that compare values using range operators (like
BETWEEN and greater than (>)). (For example, SELECT EMPLOYEE_ID FROM
EMPLOYEES WHERE EMPLOYEE_ID > 200 is a query that specifies a range retrieval
and makes effective use of a sorted index.)

You can define a hashed index and a sorted index for the same column. Then,
depending on the type of query you use, the Oracle Rdb optimizer chooses
the appropriate method of retrieval. For example, if your query contains an
exact-match retrieval, the optimizer may use hashed index access. If your
query contains a range retrieval, the optimizer uses the sorted index. This
strategy incurs the additional overhead of maintaining two indexes; however,
you need to consider the advantages of fast retrieval against the disadvantages
of updating two indexes for every change to data.

6–420 SQL Statements

CREATE INDEX Statement

See the Oracle Rdb Guide to Database Design and Definition for more
information on the relative advantages of hashed and sorted indexes.

If you specify a SORTED index, you can optionally specify NODE SIZE,
PERCENT FILL, and USAGE clauses that control the characteristics of the
nodes in the index.

TYPE IS SORTED RANKED
Specifies that the index is a sorted, ranked (B-tree) index. The ranked B-tree
index allows better optimization of queries, particularly queries involving range
retrievals. Oracle Rdb can make better estimates of cardinality, reducing disk
I/O and lock contention. Oracle Rdb recommends using ranked sorted indexes.

UNIQUE
A keyword that specifies whether or not each value of the index must be
unique. If you try to store the same value twice in a column or set of columns
that have an index defined as UNIQUE, SQL returns an error message the
second time and does not store or modify the row that contains the value. This
is true for null values as well as any other value.

If you specify UNIQUE, SQL checks as it executes the CREATE INDEX
statement to see if the table already contains duplicate values for the index.

USAGE UPDATE
USAGE QUERY
Specifies a PERCENT FILL value appropriate for update- or query-intensive
applications. The USAGE UPDATE clause sets the PERCENT FILL value at
70 percent. The USAGE QUERY clause sets the PERCENT FILL value at 100
percent.

WITH LIMIT OF (literal-list)
Specifies the highest value for the index key that resides in a particular storage
area if ASCENDING is defined. If DESCENDING is defined, the lowest value
is specified for the index key that resides in a particular storage are. For
multicolumn index keys, specify a literal value for each column.

The number of literals in the list must be the same as the number of columns
in the USING clause. Repeat this clause to partition the entries of an index
among multiple storage areas. The data type of the literals must agree with
the data type of the column. For character columns, enclose the literals in
single quotation marks.

SQL Statements 6–421

CREATE INDEX Statement

If you are creating a multisegmented index using multisegmented keys and the
STORE USING . . . WITH LIMIT clause, and if the values for the first key are
all the same, then set the limit for the first key at that value. This ensures
that the value of the second key determines the storage area in which each row
is stored.

Usage Notes

• When the CREATE INDEX statement executes, SQL adds the index
definition to the physical database. If you have declared the schema
with the PATHNAME argument, the index definition is also added to the
repository.

• You can create indexes at the same time other users are creating indexes,
even if the indexes are on the same table. To allow concurrent index
definition on the same table, use the SHARED DATA DEFINITION clause
of the SET TRANSACTION statement. For more information, see the SET
TRANSACTION Statement.

• If the character length is specified in octets, which is the default, the size
specified in the compression clause is also in octets.

If the character length is specified in characters, the size specified in the
compression clause is also in characters.

• A CREATE INDEX statement following a DROP INDEX statement does
not reuse the space made available by the previous statement, as shown in
the following MF_PERSONNEL database example. As a result, when you
display the page numbers used, they are different.

SQL> CREATE INDEX INDEX1 ON EMPLOYEES (LAST_NAME) STORE IN RDB$SYSTEM;
SQL> COMMIT;
SQL> $ RMU/DUMP/LAREA=INDEX1 MF_PERSONNEL
SQL> DROP INDEX INDEX1;
SQL> COMMIT;
SQL> CREATE INDEX INDEX1 ON EMPLOYEES (LAST_NAME) STORE IN RDB$SYSTEM;
SQL> COMMIT;
SQL> $ RMU/DUMP/LAREA=INDEX1 MF_PERSONNEL

Oracle Rdb does not reclaim clumps belonging to a table or index until the
process that deleted that clump is disconnected using the DISCONNECT
or FINISH statement.

For more information on this restriction, see the Oracle Rdb Guide to
Database Design and Definition.

6–422 SQL Statements

CREATE INDEX Statement

• Database designers should be aware of the following optimizer restrictions
concerning references to fields with the COLLATING SEQUENCE
attribute or fields whose data type is VARCHAR. These restrictions
affect performance with respect to I/O operations.

The optimizer Index Only Retrieval strategy is disabled if any field in the
index has a collating sequence defined, or is a VARCHAR field. These
two retrieval strategies require Oracle Rdb to return data stored in the
index node or perform comparisons based on the index node key fields,
thus saving I/O operations to the data record. However, the original user
data cannot be reconstructed from the encoded index if these attributes are
used. Therefore, the optimizer forces a Retrieval by Index strategy instead,
which requires I/O operations to the data record.

These restrictions may affect the choice of data type for fields to be used in
indexes. For example, PRODUCT_ID, which has a data type of CHAR(20),
is part of an index P_INDEX. A query that uses STARTING WITH against
PRODUCT_ID allows the user to enter a partial product code. It then
fetches the matched PRODUCT_ID field for display to the user, but does
not fetch any other fields. This query would normally be optimized to
reference the index PRODUCT_ID_IX only(that is, using an Index Only
Retrieval strategy). However, if the field wasdefined as VARCHAR(20),
the optimizer would be required to reference the data record to fetch the
PRODUCT_ID. This will add some extra I/O operations to the translation
query. Therefore, CHAR data type may be preferable to VARCHAR if the
field is involved in index retrieval.

The following example demonstrates this simple case. The optimizer
strategy is displayed when the SET FLAGS statement to ’STRATEGY ’.

SQL> show table PRODUCTS
Information for table PRODUCTS
Columns for table PRODUCTS:
Column Name Data Type Domain
----------- --------- ------
PRODUCT_ID_V VARCHAR(20)
PRODUCT_ID_T CHAR(20)

.

.

.
Indexes on table PRODUCTS:
P_INDEX_T with column PRODUCT_ID_T
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

Partition information for index:
Implicitly mapped to the default storage area

SQL Statements 6–423

CREATE INDEX Statement

P_INDEX_V with column PRODUCT_ID_V
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

Partition information for index:
Implicitly mapped to the default storage area
.
.
.

SQL>
SQL> set flags ’strategy,max_stability’;
SQL>
SQL> select product_id_t
cont> from PRODUCTS
cont> where product_id_t starting with ’AAA’;
Conjunct Index only retrieval of relation PRODUCTS
Index name P_INDEX_T [1:1]

0 rows selected
SQL>
SQL> select product_id_v
cont> from PRODUCTS
cont> where product_id_v starting with ’AAA’;
Conjunct Get Retrieval by index of relation PRODUCTS
Index name P_INDEX_V [1:1]

0 rows selected

Note

Most queries use indexes as a fast access method to reference rows
(records) of data, so an I/O operation to the data record is normally
required.

• If it is unlikely that you store values greater than a specific range, you can
omit the OTHERWISE clause. This lets you quickly add new partitions at
the end without reorganizing the storage areas. To add new partitions, use
the ALTER INDEX statement. For example:

SQL> ALTER INDEX EMP_HASH_INDEX
cont> STORE USING (EMPLOYEE_ID)
cont> IN PERSONNEL_1 WITH LIMIT OF (’00399’)
cont> IN PERSONNEL_2 WITH LIMIT OF (’00699’)
cont> IN PERSONNEL_3 WITH LIMIT OF (’10000’)
cont> IN PERSONNEL_4 WITH LIMIT OF (’10399’);
SQL>

Because Oracle Rdb does not have to move or reorganize data (the new
range has no data in the table), you can quickly alter indexes that do not
contain overflow partitions.

6–424 SQL Statements

CREATE INDEX Statement

For more information, see the Oracle Rdb Guide to Database Design
and Definition and the Oracle Rdb7 Guide to Database Performance and
Tuning.

• If you attempt to insert values that are out of range of the index, you
receive an error similar to the following:

%RDMS-E-EXCMAPLIMIT, exceeded limit on last partition in storage map for
EMPLOYEES

Your applications should include code that handles this type of error.

• For effective parallel sort index builds against the same database table, the
index name of each index being built concurrently must be unique within
the first 27 characters. Failure to specify a unique name creates only one
sort index because each index build requests the same name lock prior to
the start of each index build.

• You cannot create a unique index and specify duplicates compression for a
sorted ranked B-tree index. For example:

SQL> CREATE UNIQUE INDEX test_ndx
cont> ON job_history (employee_id)
cont> TYPE IS SORTED RANKED
cont> DUPLICATES ARE COMPRESSED;
%SQL-F-UNIQNODUP, The index TEST_NDX cannot be unique and have a duplicates
clause

• The CREATE INDEX statement supplies a default index node size if none
is provided for a UNIQUE SORTED index or a SORTED RANKED index.
Use the SQL SHOW INDEX or SHOW TABLE statement or the RMU
Extract command to display the value of this default node size.

• The maximum length of an index key is 255 bytes. Because Oracle Rdb
generates fixed-length index keys, this constraint is checked at the time
the index is defined. If you attempt to define an index with a key larger
than 255 characters, you get the following error message:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> CREATE TABLE TEST_TAB (TEST_COL CHAR (256));
SQL> CREATE INDEX MY_INDEX ON TEST_TAB (TEST_COL);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-INDTOOBIG, requested index is too big

• When a column is defined with a collating sequence, the index key is
specially encoded to incorporate the correct ordering (collating) information.
This special encoding takes more space than keys encoded for ASCII (the
default when no collating sequence is used). Therefore, the encoded string
uses more than the customary one byte per character of space within the
index.

SQL Statements 6–425

CREATE INDEX Statement

For all collating sequences, except Norwegian, the space required is
approximately 9 bytes for every 8 characters. So, a CHAR (24) column
will require approximately 27 bytes to store. For Norwegian collating
sequences, the space required is approximately 10 bytes for every 8
characters.

The space required for encoding the string must be taken into account,
when calculating the size of an index key against the limit of 255 bytes.
Suppose a column defined with a collating sequence of GERMAN were used
in an index. The length of that column is limited to a maximum of 225
characters, since the key will be encoded in 254 bytes.

The following example demonstrates how a 233 character column, defined
with a German collating sequence and included in an index, exceeds the
index size limit of 255 bytes, even though the column is defined as less
than 255 characters in length.

SQL> create database
cont> filename ’TESTDB.RDB’
cont> Collating sequence GERMAN German;
SQL> create table EMPLOYEE_INFO (
cont> EMP_NAME CHAR (233));
SQL> create index EMP_NAME_IDX
cont> on EMPLOYEE_INFO (
cont> EMP_NAME asc)
cont> type is sorted;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-INDTOOBIG, requested index is too big

• NOLOGGING is a transient attribute and reverts to LOGGING when the
CREATE INDEX statement is committed.

• NOLOGGING has the advantage of reducing the amount of I/O to the
recovery-unit journal file (.ruj) and after-image journal files (.aij). However,
when the transaction is rolled back, Rdb must use the management records
in the journals to undo the Create Index. For UNIFORM format storage
areas, this is quite fast because of the fast logical area delete mechanism
inherent in this area type. On the other hand, MIXED format storage
areas require recovery to scan and erase the index data; this additional
recovery time should be considered when using this clause.

6–426 SQL Statements

CREATE INDEX Statement

Examples

Example 1: Creating a simple table index

This statement names the index (EMP_EMPLOYEE_ID) and names the
column to serve as the index key (EMPLOYEE_ID).

The UNIQUE argument causes SQL to return an error message if a user tries
to store an identification number that is already assigned.

SQL> CREATE UNIQUE INDEX EMP_EMPLOYEE_ID ON EMPLOYEES
cont> (EMPLOYEE_ID);

Example 2: Creating an index with descending index segments

This statement names the index (EMP_EMPLOYEE_ID) and names the
column to serve as the descending index key (EMPLOYEE_ID DESCENDING).

The DESCENDING keyword causes the keys to be sorted in descending order.
If you do not specify DESCENDING or ASCENDING, SQL sorts the keys in
ascending order.

SQL> CREATE UNIQUE INDEX EMP_EMPLOYEE_ID ON EMPLOYEES
cont> (EMPLOYEE_ID DESCENDING);

Example 3: Creating a multisegmented index

SQL> CREATE INDEX EMP_FULL_NAME ON EMPLOYEES
cont> (LAST_NAME,
cont> FIRST_NAME,
cont> MIDDLE_INITIAL);

This statement names three columns to be used in the index EMP_FULL_
NAME. SQL concatenates these three columns to make the multisegmented
index.

Example 4: Creating a compressed numeric index

SQL> CREATE INDEX YEAR1_IND ON DEGREES
cont> (YEAR_GIVEN ASCENDING MAPPING VALUES 1950 TO 1970);

This statement creates ascending index segments for the YEAR_GIVEN
column in the DEGREES table, compressing the year values.

Example 5: Creating a truncated text index

SQL> CREATE INDEX COL_NAME_IND ON COLLEGES
cont> (COLLEGE_NAME SIZE IS 20);

This statement creates a compressed index, COL_NAME_IND, on the
COLLEGES table so that the number of octets from the COLLEGE_NAME
column that are used as a key cannot exceed 20 octets.

SQL Statements 6–427

CREATE INDEX Statement

Example 6: Creating an index in a uniform storage area with thresholds.

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ADD STORAGE AREA UNIFORM1 PAGE FORMAT IS UNIFORM;
SQL> ALTER DATABASE FILENAME mf_personnel
cont> ADD STORAGE AREA UNIFORM2 PAGE FORMAT IS UNIFORM;
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> CREATE UNIQUE INDEX EMP_THRESHOLDS ON EMPLOYEES (EMPLOYEE_ID)
cont> TYPE IS SORTED
cont> STORE USING (EMPLOYEE_ID)
cont> IN RDB$SYSTEM (THRESHOLDS ARE (60,75,90))
cont> WITH LIMIT OF (’00200’)
cont> IN UNIFORM1 (THRESHOLD IS (65))
cont> WITH LIMIT OF (’00400’)
cont> OTHERWISE IN UNIFORM2
cont> (THRESHOLD OF (90));
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-IDXCOLEXIST, an index with this column list already exists
SQL> --
SQL> SHOW INDEX EMP_THRESHOLDS
Indexes on table EMPLOYEES:
EMP_THRESHOLDS with column EMPLOYEE_ID
No Duplicates allowed
Type is Sorted
Key suffix compression is DISABLED
Node size 430
Store clause: STORE USING (EMPLOYEE_ID)

IN RDB$SYSTEM (THRESHOLDS ARE (60,75,90))
WITH LIMIT OF (’00200’)

IN UNIFORM1 (THRESHOLD IS (65))
WITH LIMIT OF (’00400’)

OTHERWISE IN UNIFORM2
(THRESHOLD OF (90))

This statement uses the STORE clause to partition the index into different
uniform page format storage areas and apply thresholds.

In Examples 7 and 8, the table COLOURS in the database MIA_CHAR_SET is
defined as:

SQL> CREATE TABLE COLOURS
cont> (ENGLISH MCS_DOM,
cont> FRENCH MCS_DOM,
cont> JAPANESE KANJI_DOM,
cont> ROMAJI DEC_KANJI_DOM,
cont> KATAKANA KATAKANA_DOM,
cont> HINDI HINDI_DOM,
cont> GREEK GREEK_DOM,
cont> ARABIC ARABIC_DOM,
cont> RUSSIAN RUSSIAN_DOM);

6–428 SQL Statements

CREATE INDEX Statement

Example 7: Creating a simple table index using the octets character length,
which is the default

SQL> SET CHARACTER LENGTH ’OCTETS’;
SQL> CREATE INDEX COLOUR_INDEX ON COLOURS (JAPANESE SIZE IS 4)
cont> TYPE IS SORTED;
SQL> SHOW INDEX COLOUR_INDEX;
Indexes on table COLOURS:
COLOUR_INDEX with column JAPANESE

size of index key is 4 octets
Duplicates are allowed
Type is Sorted

The previous statement creates a compressed index key of 4 octets.

Example 8: Creating an index using the CHARACTERS character length

SQL> SET CHARACTER LENGTH ’CHARACTERS’;
SQL> CREATE INDEX COLOUR_INDEX_2 ON COLOURS (JAPANESE SIZE IS 4)
cont> TYPE IS SORTED;
SQL> SHOW INDEX COLOUR_INDEX_2;
Indexes on table COLOURS:
COLOUR_INDEX_2 with column JAPANESE

size of index key is 4 characters
Duplicates are allowed
Type is Sorted

The previous statement creates a compressed index key of 4 characters.

Example 9: Creating an index that enables compression

The following example shows how to create an index and enable compression
with a minimum run length of 2:

SQL> CREATE INDEX EMP_NDX ON EMPLOYEES
cont> (EMPLOYEE_ID SIZE IS 4)
cont> ENABLE COMPRESSION (MINIMUM RUN LENGTH 2);
SQL> SHOW INDEX EMP_NDX;
Indexes on table EMPLOYEES:
EMP_NDX with column EMPLOYEE_ID

size of index key is 4
Duplicates are allowed
Type is Sorted
Compression is ENABLED (Minimum run length 2)

SQL Statements 6–429

CREATE INDEX Statement

Example 10: Using the Index Attributes Clause

SQL> CREATE UNIQUE INDEX JOB_JOB_CODE
cont> ON JOBS (
cont> JOB_CODE
cont> ASC)
cont> TYPE IS SORTED
cont> THRESHOLDS ARE (75,83,90)
cont> ENABLE COMPRESSION
cont> NOLOGGING
cont> COMMENT IS ’Used for translation of job codes’;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-DATACMIT, unjournaled changes made; database may not be recoverable
SQL> -- SQL returned this message because the NOLOGGING attribute
SQL> -- was set.

Example 11: Creating an Index and Displaying the Default Node Size

SQL> -- Create a simple table upon which to define
SQL> -- some indexes
SQL>
SQL> CREATE TABLE TEST_INDEX_TABLE
cont> (A CHAR(70),
cont> B INTEGER);
SQL>
SQL> -- Default value is 430 bytes
SQL>
SQL> CREATE UNIQUE INDEX TEST_INDEX_DEF
cont> ON TEST_INDEX_TABLE (A, B)
cont> TYPE IS SORTED
cont> USAGE UPDATE;
SQL>
SQL> SHOW TABLE (INDEX) TEST_INDEX_TABLE
Information for table TEST_INDEX_TABLE
TEST_INDEX_DEF with column A

and column B
No Duplicates allowed
Type is Sorted
Compression is DISABLED
Node size 430
Percent fill 70

6–430 SQL Statements

CREATE INDEX Statement

Example 12: Naming Partitions

SQL> -- Alter mf_personnel database to add three slots
SQL> -- for storage areas and then add three storage areas.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> RESERVE 3 STORAGE AREAS;
%RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD STORAGE AREA WAGE_LOW;
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD STORAGE AREA WAGE_MID;
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD STORAGE AREA WAGE_HIGH;
SQL> ATTACH ’FILENAME MF_PERSONNEL.RDB’;
SQL> -- Create an index on the JOBS table and name the partitions
SQL> CREATE INDEX WAGE_CLASS_IDX ON JOBS (WAGE_CLASS)
cont> TYPE IS SORTED
cont> STORE USING (WAGE_CLASS)
cont> IN WAGE_LOW (PARTITION WAGE_LOW) WITH LIMIT OF (’1’)
cont> IN WAGE_MID (PARTITION WAGE_MID) WITH LIMIT OF (’3’)
cont> OTHERWISE IN WAGE_HIGH (PARTITION WAGE_HIGH);

Example 13: Creating a Large Index Partitioned Across Many Storage Areas

First, create the database definition:

SQL> CREATE INDEX ... MAINTENANCE IS ENABLED DEFERRED ...;

Next submit batch jobs to build each partition in parallel. For example, each
batch job would execute a script similar to the following:

ATTACH ’filename testdatabase’;
SET FLAGS ’index_stats’;
ALTER INDEX TRANSACTIONS_INDEX BUILD PARTITION PART_1;
COMMIT;

Finally, after the batch jobs have completed, the database administrator must
make the index active for query usage by changing the maintenance mode to
ENABLED IMMEDIATE. A BUILD ALL PARTITIONS clause could be added
in case any step failed (possibly due to resource limitations or a failed node).

SQL> SET FLAGS ’index_stats’;
SQL> SET TRANSLATION READ WRITE RESERVING...FOR EXCLUSIVE WRITES;
SQL> ALTER INDEX ... BUILD ALL PARTITIONS;
SQL> ALTER INDEX ... MAINTENANCE IS ENABLED IMMEDIATE;
SQL> COMMIT;

SQL Statements 6–431

CREATE INDEX Statement

This scheme has several advantages over issuing a CREATE INDEX statement
directly:

• The build actions can be run in parallel, which allows better resource
usage (read and sort fewer rows), and reduced execution time for the index
creation.

• The partitions being processed are relatively small when compared to the
full index and, therefore, smaller quantities of data will be processed. This
will result in smaller .ruj files and less AIJ file space for these transactions.

• Each build partition runs in a separate transaction, can easily be repeated
if a step fails, and does not require repeating the entire CREATE INDEX
statement.

• If any steps have failed, they will also be repeated by the BUILD ALL
PARTITIONS clause included in the script.

6–432 SQL Statements

CREATE MODULE Statement

CREATE MODULE Statement

Defines a module as an object in an Oracle Rdb database. Stored with the
module are its functions and procedures. A function or procedure written in
SQL that resides with the data in a database is called a stored function
or stored procedure. Likewise, a module stored in a database is called a
stored module. A stored routine refers to either a stored procedure or
stored function.

You invoke a stored procedure with the CALL statement from a simple
statement procedure in embedded SQL, SQL module language, or interactive
SQL or with the CALL statement from within a compound statement.

You invoke a stored function by specifying the function name in a value
expression.

SQL uses the concept of a module as its mechanism for storing, showing,
deleting, and granting and revoking privileges on stored routines within a
database. This means you cannot store, delete, or grant and revoke privileges
on individual stored routines. Should you need to remove a stored routine,
use the DROP FUNCTION routine-name CASCADE or DROP PROCEDURE
routine-name CASCADE syntax.

In general, SQL operates on modules, not stored routines. However, there are
a few exceptions: DROP FUNCTION, DROP PROCEDURE, RENAME, SHOW
FUNCTION, SHOW PROCEDURE, and CALL. The SHOW FUNCTION
statement displays information about functions. The SHOW PROCEDURE
statement displays individual procedures in a stored module. The CALL
statement can invoke only a single stored procedure.

Environment

You can use the CREATE MODULE statement in a simple statement
procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 6–433

CREATE MODULE Statement

Format

CREATE MODULE <module-name>
STORED NAME IS <stored-name>

LANGUAGE SQL AUTHORIZATION <auth-id>

COMMENT IS ’string’ declare-clause
/

routine-clause END MODULE

declare-clause =

declare-transaction-statement
declare-local-temporary-table-statement
declare-variable-statement

routine-clause =

PROCEDURE <procedure-name>
FUNCTION <function-name> STORED NAME IS <stored-name>

()
parameter-decl

,

RETURNS result-data-type function-attr

; compound-statement ;
routine-attr compound-use-statement

external-body-clause

6–434 SQL Statements

CREATE MODULE Statement

parameter-decl =

data-type
IN <parameter-name> <domain-name>
OUT
INOUT

mechanism-clause DEFAULT value-expr

COMMENT IS ’string’
/

function-attr =

VARIANT
NOT DETERMINISTIC
LANGUAGE SQL

routine-attr =

COMMENT IS ’string’
,

USAGE IS LOCAL
GLOBAL

Arguments

AUTHORIZATION auth-id
A name that identifies the definer of a module and is used to perform privilege
validation for the module.

See the Usage Notes for more information about privilege validation and
Section 2.2.2 for information about using authorization identifiers.

COMMENT IS ’string’
Adds a comment about the module, routine, and parameter. SQL displays the
text of the comment when it executes a SHOW MODULE statement. Enclose
the comment in single quotation marks (’) and separate multiple lines in a
comment with a slash mark (/).

compound-statement
Allows you to include more than one SQL statement in a stored routine. See
the Compound Statement for more information.

SQL Statements 6–435

CREATE MODULE Statement

compound-use-statement
Allows you to include one SQL statement in a stored routine. See the
Compound Statement for more information.

If you are defining a stored function, the simple statement must be the
RETURNS clause.

data-type
A valid SQL data type. Specifying an explicit data type is an alternative to
specifying a domain name. See Section 2.3 for more information on data types.

declare-local-temporary-table-statement
Declares a local temporary table for the module. See the DECLARE LOCAL
TEMPORARY TABLE Statement for more information.

declare-transaction-statement
Declares a transaction for the module. Only one declare-transaction-
statement is permitted for each module. If omitted, an implicit DECLARE
TRANSACTION READ WRITE is used. See the DECLARE TRANSACTION
Statement for more information.

declare-variable-statement
Declares a global variable for the module. See the DECLARE Variable
Statement for more information.

DEFAULT value-expr
Specifies the default value of a parameter for a function or procedure defined
with mode IN. If you omit this parameter or if the Call statement argument
list or function invocation specifies the DEFAULT keyword, then the value-expr
specified with this clause is used. The parameter uses NULL as the default if
you do not specify a value expression explicitly.

DETERMINISTIC
NOT DETERMINISTIC
The clause controls the evaluation of an external function in the scope of a
query:

• NOT DETERMINISTIC

Specifying the NOT DETERMINISTIC clause forces evaluation of
corresponding functions (in scope of a single query) every time the function
appears. If a function can return a different result each time it is invoked,
you should use the DETERMINISTIC clause.

• DETERMINISTIC

6–436 SQL Statements

CREATE MODULE Statement

Specifying the DETERMINISTIC clause can result in a single evaluation
of corresponding function expressions (in scope of a single query), and the
resulting value is used in all occurrences of the corresponding function
expression. When you use the DETERMINISTIC clause, Oracle Rdb
evaluates whether or not to invoke the function each time it is used.

For example:

SELECT * FROM T1 WHERE F1() > 0 AND F1() < 20;

If you define the F1 function as DETERMINISTIC, the function F1() may
be evaluated just once depending on the optimizer. If you define the F1
function as NOT DETERMINISTIC, the function F1() is evaluated twice.

DETERMINISTIC is the default.

The DETERMINISTIC or NOT DETERMINISTIC clause is not allowed on
procedure definitions.

domain-name
The name of a domain created in a CREATE DOMAIN statement. For more
information about domains, see the CREATE DOMAIN Statement.

DEFAULT value-expr
Specifies the default value of a parameter for a function or procedure defined
with mode IN. If you omit this parameter or if the Call statement argument
list or function invocation specifies the DEFAULT keyword, then the value-expr
specified with this clause is used. The parameter uses NULL as the default if
you do not specify a value expression explicitly.

IN
OUT
INOUT parameter-name
Specifies the parameter modes used in a routine.

The IN parameter names the parameter that is read into the stored routine,
however it is never set. The OUT parameter names the parameter into which
data is being sent. The OUT parameter is set, but never read. The INOUT
parameter names a parameter that inputs data (is read) as well as receives
data (is set). The INOUT parameter is a parameter that is modified.

The IN parameter is the only mode allowed for functions.

Each parameter name must be unique within the routine.

SQL Statements 6–437

CREATE MODULE Statement

LANGUAGE SQL
The LANGUAGE keyword and the SQL argument signify that the procedures
in a module are to be invoked by SQL statements, not a host language
program.

With unstored procedures, the LANGUAGE keyword specifies the name of a
host language; this identifies the host language in which the program calling a
module’s procedures is written.

module-name
A user-supplied name that you assign to a module.

See Section 2.2 for more information on user-supplied names.

parameter-decl
Specifies the parameters and parameter modes used in a stored or external
routine.

PROCEDURE procedure-name
FUNCTION function-name
A user-supplied name that you give to a stored or external routine in a module.
The name you specify for a stored routine must be unique within the database
definition.

RETURNS result-data-type
Specifies the data type or domain of the result of the function invocation. This
clause is only valid when defining a function. You can only use the RETURNS
clause when defining a function.

routine-clause
The definition of a stored function or stored procedure created in a module.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a module procedure or function
created in a multischema database.

USAGE IS
Specifies how the function or procedure can be called:

• USAGE IS GLOBAL indicates that the function or procedure can be called
outside the current module. This is the default.

• USAGE IS LOCAL specifies that the routine is restricted to references
within the module. This clause is provided for compatibility with CREATE
MODULE but is not allowed for CREATE FUNCTION or CREATE
PROCEDURE.

6–438 SQL Statements

CREATE MODULE Statement

VARIANT
NOT VARIANT
These clauses are synonyms for the DETERMINISTIC and NOT DETERMINISTIC
clauses. The DETERMINISTIC clause indicates that the same inputs to the
function will generate the same output. It is the same as the NOT VARIANT
clause. The NOT DETERMINISTIC clause indicates that the output of the
function does not depend on the inputs. It is the same as the VARIANT clause.

This clause is deprecated. Use DETERMINISTIC instead.

Usage Notes

• You must have CREATE privilege on the database to create modules in
that database.

• When the module definition contains an AUTHORIZATION clause,
authorization validation checks that the authorization identifier that you
specify is a valid user name. On OpenVMS, a valid user name can be an
OpenVMS rights identifier as well as a user name.

Then, it validates privileges for this authorization ID for all objects referred
to in the module. Such a module is a definer’s rights module because the
system executes the module procedures under the authorization ID of the
module definer.

Definer’s rights modules greatly reduce the number of privileges that
need to be granted in a database because only the module definer
requires privileges on the objects referenced in the module. All other
users executing procedures in the module require an EXECUTE privilege.

An invoker’s rights module is a stored module that does not contain an
AUTHORIZATION clause. At run time, the identifier of the user that
invokes a procedure contained in the module is used to perform privilege
validation for all objects referenced by the module.

• When the AUTHORIZATION clause is used, the definer of the module
is granting their own privileges to the specified username so that tables,
columns, sequences, procedures and functions are accessed as though
accessed by the definer.

The AUTHORIZATION is expected to be the session user, or an OpenVMS
rights identifier granted to that user (when SECURITY CHECKING IS
EXTERNAL). If the session is run with one of the following OpenVMS
privileges, then any user or rights identifier can be referenced: SYSPRV,
BYPASS or IMPERSONATE.

SQL Statements 6–439

CREATE MODULE Statement

Note

The OpenVMS IMPERSONATE privilege can be used to override the
checking for Oracle Rdb Release 7.2.5.1 and later versions.

• Before any invoker’s rights routines are called, CURRENT_USER is
established as identical to the SESSION_USER. As each routine is called
it either inherits this value from the caller or, in the case of a definer’s
rights routine, it is derived from the module AUTHORIZATION clause.
Therefore, CURRENT_USER returns the authorization of the last definer’s
rights routine in the call chain.

• You invoke a stored procedure using the CALL statement. You can also
invoke a stored procedure from a compound statement or from another
stored procedure.

See the CALL Statement for Simple Statements and the CALL Statement
for Compound Statements for more information on invoking a stored
procedure.

• If the parameter mode is omitted, it defaults to IN for external routines
and stored functions. For stored procedures it is determined by usage.
Use SHOW PROCEDURE and SHOW FUNCTION to see these implicit
settings.

• The following highlight some differences between stored and nonstored
procedures:

Stored procedures allow null values to be passed by the parameters;
nonstored procedures must use indicator variables.

You cannot declare a status parameter such as SQLCODE, SQLSTATE,
or SQLCA in a stored procedure; you must declare a status parameter
for nonstored procedures.

All SQL data types are allowed in stored procedures. Depending on
the host language used, some data types are not allowed in nonstored
procedures.

Stored and nonstored module names must be unique from each other.
If you attempt to invoke a stored module while a nonstored module
with the same name is active, you receive the following error:

%RDB-E-IMP_EXC, facility-specific limit exceeded
-RDMS-E-MODEXTS, there is another module named SALARY_ROUTINES in
this database

6–440 SQL Statements

CREATE MODULE Statement

• Stored routine names must be unique from other stored and external
routines.

• If you alter or delete certain SQL elements, you can cause SQL to
invalidate the stored routines that use those elements.

In general, any DROP statement that is restricted does not affect stored
routine validation. A statement with the RESTRICT keyword prevents
the deletion of any objects that have any stored routine dependencies.
Drop cascade operations execute successfully, but cause stored routine
invalidation.

Table 6–4 shows which statements can cause SQL to invalidate stored
routines.

Table 6–4 ALTER and DROP Statements Causing or Not Causing Stored Routine Invalidation

Object
Type

SQL
Statement

Does This
Statement Fail?

Stored
Routine
Invalidated?

Dependency

Type1

Column ALTER TABLE DROP COLUMN Yes No SR
ALTER TABLE ADD COLUMN No Yes LS
ALTER TABLE ADD COLUMN No No SR
ALTER TABLE
ALTER COLUMN AFTER
COLUMN

No Yes LS

ALTER TABLE
ALTER COLUMN BEFORE
COLUMN

No Yes LS

Constraint ALTER TABLE
DROP CONSTRAINT

Yes No SR

ALTER TABLE
ADD CONSTRAINT

No No SR or DE

RENAME CONSTRAINT No No6 DE

1Dependency types: DE (default evaluating), DR (default reserving), LS (language semantics), SR (stored routine), SM
(stored module).
6If the old constraint name is referenced in a DECLARE TRANSACTION ... EVALUATING clause and later this
declasred transaction is used when invoking a routine an error will be raised.

(continued on next page)

SQL Statements 6–441

CREATE MODULE Statement

Table 6–4 (Cont.) ALTER and DROP Statements Causing or Not Causing Stored Routine
Invalidation

Object
Type

SQL
Statement

Does This
Statement Fail?

Stored
Routine
Invalidated?

Dependency

Type1

Domain ALTER DOMAIN data type (in
parameter list)

Yes No SR2

ALTER DOMAIN data type (in
procedure block)

No No SR3

DROP DOMAIN Yes No SR or SM
RENAME DOMAIN No No4 SR

Function ALTER FUNCTION No No SR
DROP FUNCTION RESTRICT Yes No SR
DROP FUNCTION CASCADE No Yes SR
RENAME FUNCTION No No4 SR

Module ALTER MODULE
DROP FUNCTION RESTRICT

Yes No SR

ALTER MODULE
DROP FUNCTION CASCADE

No Yes SR

ALTER MODULE
DROP PROCEDURE RESTRICT

Yes No SR

ALTER MODULE
DROP PROCEDURE CASCADE

No Yes SR

DROP MODULE RESTRICT Yes No SR
DROP MODULE CASCADE No Yes SR
RENAME MODULE No No4 SR

Procedure ALTER PROCEDURE No No SR
DROP PROCEDURE RESTRICT Yes No SR
DROP PROCEDURE CASCADE No Yes SR
RENAME PROCEDURE No No4 SR

1Dependency types: DE (default evaluating), DR (default reserving), LS (language semantics), SR (stored routine), SM
(stored module).
2Oracle Rdb keeps this domain parameter list dependency in RDB$PARAMETERS, not in RDB$INTERRELATIONS.
3Oracle Rdb stores routine dependencies in RDB$INTERRELATIONS when a domain exists in a stored routine block.
4RENAME adds a synonym for the old name, only if this synonym is dropped is the routine invalidated.

(continued on next page)

6–442 SQL Statements

CREATE MODULE Statement

Table 6–4 (Cont.) ALTER and DROP Statements Causing or Not Causing Stored Routine
Invalidation

Object
Type

SQL
Statement

Does This
Statement Fail?

Stored
Routine
Invalidated?

Dependency

Type1

Sequence ALTER SEQUENCE No No SR
DROP SEQUENCE RESTRICT Yes No SR
DROP SEQUENCE CASCADE No Yes SR
RENAME SEQUENCE No No4 SR

Synonym ALTER SYNONYM No No5 SR
DROP SYNONYM RESTRICT Yes No SR
DROP SYNONYM CASCADE No Yes SR

Table ALTER TABLE No No SR
DROP TABLE RESTRICT Yes No SR, LS,

DR, or SM
DROP TABLE CASCADE No Yes SR or LS
RENAME TABLE No No4 SR

View DROP VIEW RESTRICT Yes No SR, LS, or
DR

DROP VIEW CASCADE No Yes SR or LS
RENAME VIEW No No4 SR

1Dependency types: DE (default evaluating), DR (default reserving), LS (language semantics), SR (stored routine), SM
(stored module).
4RENAME adds a synonym for the old name, only if this synonym is dropped is the routine invalidated.
5The altered synonym should reference an object (table, view, function or procedure) with the same column or parameter
list, otherwise an error will occur at run-time.

• The maximum length for each string literal in a comment is 1,024
characters.

• You cannot specify the COMMIT, ROLLBACK, START TRANSACTION, or
SET TRANSACTION statements within a stored function.

• You can invoke a function anywhere a value expression is allowed.

• There is no limit set by Oracle Rdb as to the depth of nesting allowed for
stored routines. Memory and stack size are the only constraints to consider
here.

SQL Statements 6–443

CREATE MODULE Statement

• Stored routines can reference any other previously defined stored routines
in the module. See also the DECLARE STATEMENT Statement and
DECLARE Routine Statement.

• The TRACE statement can be used from any stored routine. However, if
you enable the TRACE flag from within SQL, you must do so before the
stored routine is invoked.

• In general, SQL operates on modules, not on the contained routines, with
the following exceptions: DROP FUNCTION, DROP PROCEDURE, SHOW
FUNCTION, SHOW PROCEDURE, and CALL. The SHOW FUNCTION
statement displays information about functions. The SHOW PROCEDURE
statement displays individual procedures.

• The mechanism-clause is not permitted for SQL stored functions or
procedures.

• The following usage notes provide information about global variables:

Global variables can be referenced from any routine within the created
module (just like local variables).

If a local variable and a global variable have the same name, then
the local variable takes precedence over the global variable within
the scope of the function or procedure in which the local variable is
declared. For example:

SQL> SET FLAGS ’TRACE’;
SQL> CREATE MODULE SAMPLE
cont> DECLARE :IMAX INTEGER DEFAULT 100
cont> PROCEDURE TRACE_MAX;
cont> BEGIN
cont> DECLARE :IMAX INTEGER DEFAULT 0;
cont> TRACE :IMAX;
cont> END;
cont> END MODULE;
SQL> CALL TRACE_MAX();
~Xt: 0

All DEFAULT value clauses are evaluated when the first function or
procedure is called for a module.

Data persists until a module is unloaded at DISCONNECT time.
Therefore, routines in a module can exchange data using global
variables.

Neither a COMMIT nor a ROLLBACK statement affects the state of
the variables. That is, changes to variables are not rolled back.

6–444 SQL Statements

CREATE MODULE Statement

• When CURRENT_USER or CURRENT_UID are used as a default for a
stored function or stored procedure, they are evaluated as though passed
by the caller, and are not evaluated within the routine being created. This
is significant only if the module is a definers rights module (that is, has an
AUTHORIZATION clause).

For example, the following example returns the invoker as the current user
and not the AUTHORIZATION of the module as might be expected:

SQL> create module DEF
cont> authorization FEENAN
cont> procedure DEF1
cont> (in :a char(31)
cont> default current_user);
cont> trace :a;
cont> end module;
SQL>
SQL> set flags ’trace’;
SQL> begin
cont> call DEF1 ();
cont> end;
~Xt: SMITH

• If the default expression uses SQL functions to access tables, then those
tables should be explicitly locked within the function or nested called
procedures using the LOCK TABLE statement within the function.

• External and stored routines can be included in a single module. This
provides the following benefits:

This allows simplified DROP, GRANT and REVOKE operations which
will operate on multiple routines in a single statement. For instance,
a DROP MODULE can be used to remove external and stored routines
in a single command. GRANT and REVOKE can be applied to a larger
set of routines, rather than requiring individual statements for each
external routine.

Related routines, whether external or stored, can be grouped together
thus providing simplified database maintenance.

External routines within the same module now share the same
database environment. This allows, for instance, one external routine
to OPEN a cursor, another to FETCH rows and another to CLOSE the
cursor.

In contrast when an external routine is created using the CREATE
FUNCTION or CREATE PROCEDURE syntax only that routine uses
the database environment.

SQL Statements 6–445

CREATE MODULE Statement

• The name of the stored module need not be the same as that used for
the SQL module language module, or SQL pre-compiled module which
implements the external functionality. However, keeping identical or
similar names may assist future maintenance of the application.

• The shared module database environment is only significant for external
routines which execute SQL statements.

• If an external routine attaches to a database, it will be implicitly
disconnected when the invoking session is terminated.

However, Oracle recommends that the current transaction, open cursors
and session started for the external function be terminated before using
DISCONNECT. This can be done explicitly by calling an external routine
which terminates the transaction and disconnects in the same context as
the invoking routine, or it can be done implicitly when using a NOTIFY
routine.

• If declare-transaction-statement is omitted from the CREATE MODULE
definition then SQL applies a default of DECLARE TRANSACTION READ
WRITE

Examples

Example 1: Creating a stored module and stored procedure

The following example shows how to create a stored module and stored
procedure using interactive SQL:

SQL> CREATE MODULE testmod LANGUAGE SQL
cont> PROCEDURE testproc;
cont> COMMIT;
cont> END MODULE;
SQL> SHOW MODULE testmod
Module name is: TESTMOD
Source:
TESTMOD LANGUAGE SQL
Owner is:
Module ID is: 1

Example 2: Creating a stored module with SQL module language

The following code fragment shows how to create a stored module as part of a
procedure in a nonstored module:

6–446 SQL Statements

CREATE MODULE Statement

PROCEDURE create_them
SQLCODE;
CREATE MODULE my LANGUAGE SQL AUTHORIZATION smith

PROCEDURE p1 (:x CHAR(5));
BEGIN
INSERT INTO s (snum) VALUES (:x);
END;

PROCEDURE p2 (:y SMALLINT);
BEGIN
SELECT STATUS INTO :y FROM s LIMIT TO 1 ROW;
END;

PROCEDURE p3 (:x INT, :y SMALLINT);
BEGIN
INSERT INTO s (snum) VALUES (:x);
SELECT STATUS INTO :y FROM s WHERE snum = :x;
END;

PROCEDURE p4 (:x CHAR(5), :y CHAR(20));
BEGIN
INSERT INTO s (snum,sname) VALUES (:x, :y);
SELECT sname INTO :y FROM s WHERE snum = :x;
END;

END MODULE;

Example 3: Creating a stored module containing a stored routines

SQL> CREATE MODULE utility_functions
cont> LANGUAGE SQL
cont> --
cont> -- Define a stored procedure.
cont> --
cont> PROCEDURE trace_date (:dt DATE);
cont> BEGIN
cont> TRACE :dt;
cont> END;
cont> --
cont> FUNCTION mdy (IN :dt DATE) RETURNS CHAR(10)
cont> COMMENT ’Returns the date in month/day/year format’;
cont> BEGIN
cont> IF :dt IS NULL THEN
cont> RETURN ’**/**/****’;
cont> ELSE
cont> CALL trace_date (:dt);
cont> RETURN CAST(EXTRACT(MONTH FROM :dt) AS VARCHAR(2)) || ’/’ ||
cont> CAST(EXTRACT(DAY FROM :dt) AS VARCHAR(2)) || ’/’ ||
cont> CAST(EXTRACT(YEAR FROM :dt) AS VARCHAR(4));
cont> END IF;
cont> END;
cont> END MODULE;

SQL Statements 6–447

CREATE MODULE Statement

Example 4: Using a stored function in a SELECT statement

SQL> SELECT mdy(job_end), job_end
cont> FROM job_history WHERE employee_id = ’00164’;

JOB_END
//**** NULL
9/20/1981 20-Sep-1981
2 rows selected

Example 5: Using declared local temporary tables in stored procedures

SQL> -- The following table must exist in order to execute the following
SQL> -- queries.
SQL> --
SQL> CREATE TABLE payroll
cont> (employee_id CHAR(5),
cont> hours_worked INTEGER,
cont> hourly_sal REAL,
cont> week_date CHAR(10));
SQL> COMMIT;
SQL> --
SQL> -- Create the module containing a declared local temporary table.
SQL> --
SQL> CREATE MODULE paycheck_decl_mod
cont> LANGUAGE SQL
cont> DECLARE LOCAL TEMPORARY TABLE module.paycheck_decl_tab
cont> (employee_id ID_DOM,
cont> last_name CHAR(14) ,
cont> hours_worked INTEGER,
cont> hourly_sal INTEGER(2),
cont> weekly_pay INTEGER(2))
cont> ON COMMIT PRESERVE ROWS
cont> --
cont> -- Create the procedure to insert rows.
cont> --
cont> PROCEDURE paycheck_ins_decl;
cont> BEGIN
cont> INSERT INTO module.paycheck_decl_tab
cont> (employee_id, last_name, hours_worked, hourly_sal, weekly_pay)
cont> SELECT p.employee_id, e.last_name,
cont> p.hours_worked, p.hourly_sal,
cont> p.hours_worked * p.hourly_sal
cont> FROM employees e, payroll p
cont> WHERE e.employee_id = p.employee_id
cont> AND p.week_date = ’1995-08-01’;
cont> END;

6–448 SQL Statements

CREATE MODULE Statement

cont> --
cont> -- Create the procedure to count the low hours.
cont> --
cont> PROCEDURE low_hours_decl (:cnt INTEGER);
cont> BEGIN
cont> SELECT COUNT(*) INTO :cnt FROM module.paycheck_decl_tab
cont> WHERE hours_worked < 40;
cont> END;
cont> END MODULE;
SQL> --
SQL> -- Call the procedure to insert the rows.
SQL> --
SQL> CALL paycheck_ins_decl();
SQL> --
SQL> -- Declare a variable and call the procedure to count records with
SQL> -- low hours.
SQL> --
SQL> DECLARE :low_hr_cnt integer;
SQL> CALL low_hours_decl(:low_hr_cnt);
LOW_HR_CNT

2

SQL> --
SQL> -- Because the table is a declared local temporary table, you cannot
SQL> -- access it from outside the stored module that contains it.
SQL> --
SQL> SELECT * FROM module.paycheck_decl_tab;
%SQL-F-RELNOTDCL, Table PAYCHECK_DECL_TAB has not been declared in module or
environment

Example 6: Creating a stored procedure containing a simple statement

SQL> CREATE MODULE a
cont> LANGUAGE SQL
cont> PROCEDURE new_salary_proc
cont> (:id CHAR (5),
cont> :new_salary INTEGER (2));
cont> UPDATE salary_history
cont> SET salary_end = CURRENT_TIMESTAMP
cont> WHERE employee_id = :id;
cont> END MODULE;

SQL Statements 6–449

CREATE MODULE Statement

Example 7: Declaring a Global Variable to Exchange Information Between Two
Routines

SQL> CREATE MODULE sample
cont> LANGUAGE SQL
cont> DECLARE :iter_count INTEGER
cont> PROCEDURE set_iter (IN :val INTEGER)
cont> COMMENT IS ’Validate the iteration count and assign’
cont> / ’to a global variable.’;
cont> BEGIN
cont> IF (:val IS NULL) OR (:val < 1) THEN
cont> SIGNAL ’XXXXX’; --illegal value
cont> ELSE
cont> SET :iter_count =:val;
cont> TRACE ’Iteration count set to ’, :val;
cont> END IF;
cont> END;
cont> FUNCTION GET_ITER ()
cont> RETURNS INTEGER
cont> COMMENT IS ’Trace the value used and then return the’
cont> / ’value from the global variable.’;
cont> BEGIN
cont> TRACE ’Using iteration count ’, :iter_count;
cont> RETURN :iter_count;
cont> END;
cont> END MODULE;

Example 8: Using a cursor implemented by external routines

This example uses multiple external routines to manage a table cursor in the
external routine database environment. This management includes the OPEN,
FETCH and CLOSE of a single cursor.

Several domains are defined so that parameter data types can be consistently
defined in the database that contain the application and also the database
upon which the cursor is open.

create domain SQLSTATE_T char(5);
create domain STATUS_CODE char(1);
create domain STATUS_NAME char(8);
create domain STATUS_TYPE char(14);

The external function interface is contained within a single CREATE MODULE
statement. This module also contains the application in a single stored SQL
procedure.

6–450 SQL Statements

CREATE MODULE Statement

create module EX
language SQL

-- These procedure define the interface to the external
-- routines that implement the transaction and cursor operations
--
procedure EX_START_READ_TXN

(inout :ss sqlstate_t);
external location ’TEST$SCRATCH:EX.EXE’
language general
general parameter style
comment is ’start a READ ONLY transaction’;

procedure EX_COMMIT
(inout :ss sqlstate_t);
external location ’TEST$SCRATCH:EX.EXE’
language general
general parameter style;

procedure EX_OPEN_CURSOR
(inout :ss sqlstate_t);
external location ’TEST$SCRATCH:EX.EXE’
language general
general parameter style
comment is ’find all rows in WORK_STATUS order by STATUS_CODE’;

procedure EX_CLOSE_CURSOR
(inout :ss sqlstate_t);
external location ’TEST$SCRATCH:EX.EXE’
language general
general parameter style;

procedure EX_FETCH_CURSOR
(inout :ss sqlstate_t,
out :s_code STATUS_CODE, out :s_code_ind integer,
out :s_name STATUS_NAME, out :s_name_ind integer,
out :s_type STATUS_TYPE, out :s_type_ind integer);
external location ’TEST$SCRATCH:EX.EXE’
language general
general parameter style;

-- This SQL procedures implements a simple application
--
procedure WORK_STATUS

comment is ’Use an external cursor to fetch all rows in the’
/ ’WORK_STATUS table’;
begin
declare :s_code STATUS_CODE;
declare :s_name STATUS_NAME;
declare :s_type STATUS_TYPE;
declare :s_code_ind, :s_name_ind, :s_type_ind integer;
declare :ss sqlstate_t;

SQL Statements 6–451

CREATE MODULE Statement

-- start a read-only transaction on the PERSONNEL database
call EX_START_READ_TXN (:ss);
if :ss ^= ’00000’ then

SIGNAL :ss;
end if;

-- open the cursor on the work-status table
call EX_OPEN_CURSOR (:ss);
if :ss ^= ’00000’ then

SIGNAL :ss;
end if;

-- now loop and fetch all the rows
FETCH_LOOP:
loop

call EX_FETCH_CURSOR (:ss,
:s_code, :s_code_ind,
:s_name, :s_name_ind,
:s_type, :s_type_ind);

case :ss
when ’02000’ then

-- no more rows to fetch
leave FETCH_LOOP;

when ’00000’ then
begin
-- we have successfully fetched a row, so display it
trace ’Status Code: ’, case when :s_code_ind < 0

then ’NULL’
else :s_code

end;
trace ’Status Name: ’, case when :s_name_ind < 0

then ’NULL’
else :s_name

end;
trace ’Status Type: ’, case when :s_type_ind < 0

then ’NULL’
else :s_type

end;
trace ’***’;
end;

else
-- signal will implicitly leave the stored procedure
SIGNAL :ss;

end case;
end loop;

-- close the cursor
call EX_CLOSE_CURSOR (:ss);
if :ss ^= ’00000’ then

SIGNAL :ss;
end if;

6–452 SQL Statements

CREATE MODULE Statement

-- commit the transaction
call EX_COMMIT (:ss);
if :ss ^= ’00000’ then

SIGNAL :ss;
end if;
end;

end module;

The external procedures for this this example are written using the SQL
module language. However, any language with embedded SQL, such as C,
could have been used.

module EX
language GENERAL
parameter colons
-- EX: Sample application
-- Process the WORK_STATUS table using a table cursor
--
declare alias filename ’PERSONNEL’

declare c cursor for
select status_code, status_name, status_type
from WORK_STATUS
order by status_code

procedure EX_START_READ_TXN
(sqlstate);
begin
-- abort any stray transactions
rollback;
-- start a READ ONLY transaction
set transaction read only;
end;

procedure EX_COMMIT
(sqlstate);
commit work;

procedure EX_ROLLBACK
(sqlstate);
rollback work;

procedure EX_OPEN_CURSOR
(sqlstate);
open c;

procedure EX_CLOSE_CURSOR
(sqlstate);
close c;

SQL Statements 6–453

CREATE MODULE Statement

procedure EX_FETCH_CURSOR
(sqlstate,
:s_code STATUS_CODE,
:s_code_ind integer,
:s_name STATUS_NAME,
:s_name_ind integer,
:s_type STATUS_TYPE,
:s_type_ind integer);
fetch c
into :s_code indicator :s_code_ind,

:s_name indicator :s_name_ind,
:s_type indicator :s_type_ind;

procedure EX_DISCONNECT
(sqlstate);
disconnect default;

When run the application calls the external procedures to open the cursor and
fetch the rows and display them using the TRACE statement.

SQL> set flags ’trace’;
SQL>
SQL> call WORK_STATUS ();
~Xt: Status Code: 0
~Xt: Status Name: INACTIVE
~Xt: Status Type: RECORD EXPIRED
~Xt: ***
~Xt: Status Code: 1
~Xt: Status Name: ACTIVE
~Xt: Status Type: FULL TIME
~Xt: ***
~Xt: Status Code: 2
~Xt: Status Name: ACTIVE
~Xt: Status Type: PART TIME
~Xt: ***
SQL>

Oracle recommends that the cursors be closed, and the external routines
database environment be disconnected before the calling session is
disconnected. This can be achieved by using NOTIFY routines.

For example, the external procedure that starts the transaction could be
modified as shown below to declare a NOTIFY routine (EX_RUNDOWN) that
when called would close the cursors, rollback the transaction and disconnect
from the database.

6–454 SQL Statements

CREATE MODULE Statement

procedure EX_START_READ_TXN
(inout :ss sqlstate_t);
external location ’TEST$SCRATCH:EX.EXE’
language general
general parameter style
notify EX_RUNDOWN on BIND
comment is ’start a READ ONLY transaction’;

The BIND notification ensures that EX_RUNDOWN will be called during the
DISCONNECT of the caller and allow the transaction to be rolled back and
the session disconnected. ROLLBACK or COMMIT will implicitly close any
open cursors, unless the cursor were defined as WITH HOLD. In this case it is
important to also close that cursor. Code similar to the following (in C) could
implement this rundown routine.

#include <string.h>
#include <stdio.h>
#define RDB$K_RTX_NOTIFY_ACTV_END 2
#define SQLSTATE_LEN 5
void sql_signal ();
void EX_CLOSE_CURSOR (char sqlstate [SQLSTATE_LEN]);
void EX_DISCONNECT (char sqlstate [SQLSTATE_LEN]);
void EX_ROLLBACK (char sqlstate [SQLSTATE_LEN]);

extern void EX_RUNDOWN
(int *func_code,
int *u1, /* U1, U2, U3 are currently unused */
int *u2, /* and are reserved for future use */
int *u3)

{
char sqlstate [SQLSTATE_LEN];

if (*func_code == RDB$K_RTX_NOTIFY_ACTV_END)
{

/* we are running down this external routine, so
* close the cursor
*/
EX_CLOSE_CURSOR (sqlstate);
if (memcmp ("00000", sqlstate, SQLSTATE_LEN) != 0

&& memcmp ("24000", sqlstate, SQLSTATE_LEN) != 0)
/* we expect success or maybe 24000 (bad cursor state)
*/
sql_signal ();

/* rollback the transaction
*/
EX_ROLLBACK (sqlstate);
if (memcmp ("00000", sqlstate, SQLSTATE_LEN) != 0

&& memcmp ("25000", sqlstate, SQLSTATE_LEN) != 0)
/* we expect success or maybe 25000 (bad transaction state)
*/
sql_signal ();

SQL Statements 6–455

CREATE MODULE Statement

/* disconnect from the database
*/
EX_DISCONNECT (sqlstate);
if (memcmp ("00000", sqlstate, SQLSTATE_LEN) != 0)

/* we expect success or maybe 25000 (bad transaction state)
*/
sql_signal ();

}
}

The application can be compiled and built using this fragment of DCL code:

$ create ex.opt
symbol_vector = (EX_START_READ_TXN = procedure)
symbol_vector = (EX_COMMIT = procedure)
symbol_vector = (EX_ROLLBACK = procedure)
symbol_vector = (EX_OPEN_CURSOR = procedure)
symbol_vector = (EX_CLOSE_CURSOR = procedure)
symbol_vector = (EX_FETCH_CURSOR = procedure)
symbol_vector = (EX_DISCONNECT = procedure)
symbol_vector = (EX_RUNDOWN = procedure)
psect_attr = RDB$MESSAGE_VECTOR,noshr
psect_attr = RDB$DBHANDLE,noshr
psect_attr = RDB$TRANSACTION_HANDLE,noshr
sql$user/library
$
$ cc EX_RUNDOWN
$ sql$mod EX
$ link/share EX,EX_RUNDOWN,EX/option

6–456 SQL Statements

CREATE OUTLINE Statement

CREATE OUTLINE Statement

Creates a new query outline and stores this outline in the database.

A query outline is an overall plan for how a query can be implemented and
may contain directives that control the join order, join methods, index usage
(or all of these) the optimizer selects when processing a query. Use of query
outlines helps ensure that query performance is highly stable across releases of
Oracle Rdb.

Environment

You can use the CREATE OUTLINE statement only in interactive SQL.

Format

CREATE OUTLINE <outline-name>
STORED NAME IS <stored-name>

FROM (<sql-query>)
on-clause
ID ’id-number’

MODE mode AS (query-list)
USING

COMPLIANCE MANDATORY
OPTIONAL

EXECUTION OPTIONS (execution-options)

COMMENT IS ’string’
/

on-clause =

ON PROCEDURE ID proc-id
FUNCTION NAME <name>
COLUMN <name>
CONSTRAINT
TRIGGER
VIEW

SQL Statements 6–457

CREATE OUTLINE Statement

query-list =

QUERY (source)

source =

table-access
FLOATING ORDERED (source)

UNORDERED
subquery-list

JOIN BY CROSS TO
MATCH
ANY METHOD

UNION WITH

table-access =

<table-name> context
MODULE <module-name>

ACCESS PATH
ANY
SEQUENTIAL
DBKEY
ROWID
NO INDEX
INDEX <index-name>

,

subquery-list =

SUBQUERY (source)

6–458 SQL Statements

CREATE OUTLINE Statement

execution-options =

ANY
NONE
FAST FIRST
TOTAL TIME

Arguments

ACCESS PATH ANY
ACCESS PATH SEQUENTIAL
ACCESS PATH DBKEY
ACCESS PATH ROWID
ACCESS PATH NO INDEX
Specifies the access path to use to retrieve data from the underlying database
table. The following table lists the valid access paths.

Path Meaning

ANY Indicates that the optimizer may choose the most
appropriate method.

SEQUENTIAL Indicates that sequential access should be used.
DBKEY Indicates the access by database key should be used.
ROWID1 Indicates the access by database key should be used.
NO INDEX Indicates that any access path not requiring an index

can be used. NOINDEX is accepted as a synonym for
NO INDEX.

1ROWID is a synonym for DBKEY.

There is no default access path. An access path must be specified for each
database table specified within a query outline definition.

ACCESS PATH INDEX index-name
Specifies that data should be retrieved using the specified index or list of
indexes. If more that one index can be used, then separate each index name
with a comma.

Any index name specified should indicate an existing index associated with the
table with which the access method is associated.

SQL Statements 6–459

CREATE OUTLINE Statement

AS (query-list)
Provides the main definition of an outline.

This clause is only required when creating an outline using the ID id-number
clause.

COMMENT IS ’string’
Adds a comment about the outline. SQL displays the text when it executes
a SHOW OUTLINES statement in interactive SQL. Enclose the comment in
single quotation marks (’) and separate multiple lines in a comment with a
slash mark (/).

COMPLIANCE MANDATORY
COMPLIANCE OPTIONAL
Specifies the compliance level for this outline.

MANDATORY indicates that all outline directives such as table order and
index usage should be followed as specified. If the optimizer is unable to follow
any outline directive, an exception is raised.

OPTIONAL indicates that all outline directives are optional and that if they
cannot be followed, no exception should be raised. If OPTIONAL is specified,
the strategy chosen by the optimizer to carry out the underlying request may
not match the strategy specified within the outline.

Use MANDATORY when the strategy that the optimizer chooses must be
followed exactly as specified from version to version of Oracle Rdb even if the
optimizer finds a more efficient strategy in a future version of Oracle Rdb.

The default is COMPLIANCE OPTIONAL.

context
Specifies the context number for this table. Specify an unsigned integer. This
number is allocated to the table by the optimizer during optimization. Context
numbers are unique within queries.

EXECUTION OPTIONS (execution-options)
Specifies options that the optimizer should take into account during
optimization. The following table lists the valid options.

Option Meaning

ANY Indicates that the optimizer can choose any
optimization method

6–460 SQL Statements

CREATE OUTLINE Statement

Option Meaning

FAST FIRST Indicates that the optimizer can use FAST FIRST
optimization if and when appropriate

NONE Indicates that optional optimizations should not be
applied

TOTAL TIME Indicates that the optimizer can use TOTAL TIME
optimization if and when appropriate

The default is EXECUTION OPTIONS (ANY).

FLOATING
Specifies that the following data source should be considered to be floating and
that the order of the data source relative to the other data sources within the
same level is not fixed.

FROM (sql-query)
Enables an outline to be created directly from an SQL statement.

If the AS clause is not specified, the sql-query is compiled and the resulting
outline is stored. If the AS clause is specified, the sql-query provides an
alternate means of specifying the ID. If the USING clause is specified, the
sql-query is optimized using the designated outline as a starting point.

The only statement accepted as an sql-query in the FROM clause is a SELECT
statement. Do not end the sql-query with a semicolon.

ID ’id-number’
Specifies the internal hash identification number of the request to which
this outline should be applied. Specify a 32-byte string representing a 32-
hexadecimal character identification code. The internal hash identification
code is generated by the optimizer whenever query outlines are created by the
Oracle Rdb optimizer during optimization.

You can optionally specify the MODE clause. You are required to specify the
AS clause. You cannot specify the USING clause with the ID id-number clause.

JOIN BY CROSS
JOIN BY MATCH
JOIN BY ANY METHOD
Specifies the method with which two data sources should be joined. The
following table lists the valid methods.

SQL Statements 6–461

CREATE OUTLINE Statement

Method Meaning

CROSS Indicates that a cross strategy should be used
MATCH Indicates that a match strategy should be used1

ANY METHOD Indicates that the optimizer can choose any method to
join the two data sources

1The match join strategy requires that an equivalent join column exist between the inner and outer
context of the join order. If the query for which the outline is created does not have an equivalent
join column, then the optimizer cannot use the match join strategy specified in the outline.

There is no default join method.

MODE mode
Mode is a value assigned to an outline when it is generated by the optimizer.
The default mode is 0. Specify a signed integer.

If you create multiple outlines for a single query, the outlines cannot have the
same outline mode. When more than one outline exists for a query, you can set
the RDMS$BIND_OUTLINE_MODE logical name to the value of the outline
mode for the outline you want the optimizer to use. For example, if you have
a query that runs during the day and at night and you created two outlines
for the query, you could keep the default outline mode of 0 for the outline to
be used during the day, and assign an outline mode of –1 for the outline to be
used at night. By setting the RDMS$BIND_OUTLINE_MODE logical name to
–1 at night, the appropriate outline is run at the appropriate time.

Valid values for modes are –2,147,483,648 to 2,147,483,647. Positive mode
values are reserved for future use, so it is recommended that you specify a
value between 0 and –2,147,483,648 for the mode value.

MODULE module-name
Associates an outline with a declared local temporary table by qualifying the
table name with the name of the stored module. In order to apply the outline
to the declared local temporary table, the keyword MODULE is required.

ON COLUMN name
Generates an outline for the specified columns DEFAULT, COMPUTED BY or
AUTOMATIC expression. This is a partial outline which will be used when
the column is referenced. If a column has both an AUTOMATIC UPDATE AS
clause and a DEFAULT expression, then only one outline is created for the
AUTOMATIC clause.

ON CONSTRAINT name
Generates an outline definition for the specified constraint.

6–462 SQL Statements

CREATE OUTLINE Statement

ON FUNCTION ID proc-id
ON FUNCTION NAME name
Generates an outline definition for the specified stored function.

ON PROCEDURE ID proc-id
ON PROCEDURE NAME name
Generates an outline definition for the specified stored procedure.

ON TRIGGER name
Generates an outline definition for the specified trigger.

ON VIEW name
Generates an outline definition for the specified view.

ORDERED
Specifies that all nonfloating data sources within the parentheses should be
retrieved in the order specified. Join items in the group are placed adjacently.

outline-name
The name of the new query outline. The name has a maximum length of 31
characters.

QUERY
Specifies that the data sources within the parentheses belong to a separate
query.

SUBQUERY
Specifies that the data sources within the parentheses belong to a separate
subquery.

table-name
Specifies the name of a database table.

UNION WITH
Specifies the union of two data sources.

Either a join or union method must be specified between all data sources with
the exception of QUERY source blocks.

Note

When a join method appears immediately before an ordered or
unordered group, the join method is associated with the first join
item named in the group.

SQL Statements 6–463

CREATE OUTLINE Statement

The union strategy is only valid for queries that use the UNION operator, and
all queries that specify the UNION operator must use the union strategy.

UNORDERED
Specifies that all data sources within the parentheses should be considered
floating and that no order is implied. Join items in the group are placed
adjacently.

USING (query-list)
Specifies the outline to be used for compilation of the contents of the FROM
and ON clauses.

You cannot use this clause with the ID id-number clause.

Usage Notes

• See the chapter on the Query Optimizer in the Oracle Rdb7 Guide to
Database Performance and Tuning for more information on using the
optimizer to create an outline and customizing query outlines.

• You must have the CREATE privilege on all tables referenced in the query
outline.

• The CREATE OUTLINE statement is an online operation. Other users can
be attached to the database when an outline is created.

• Each query outline can only contain one SQL statement.

• You can specify Ss (an uppercase S followed by a lowercase s enclosed in
double quotation marks) with the RDMS$DEBUG_FLAGS logical name to
display outlines generated by the optimizer. Or specify the SET FLAGS
’OUTLINE’ statement. See the SET FLAGS Statement and the Oracle
Rdb7 Guide to Database Performance and Tuning for more information.

• The maximum length for each string literal in a comment is 1024
characters.

• Because indexes cannot be defined on a declared local temporary table, the
only table access paths allowed are SEQUENTIAL, DBKEY, or ROWID
when using the MODULE clause.

• You cannot use a nonstored module name with the MODULE clause.

• You can only specify stored routines with the ON PROCEDURE or ON
FUNCTION clauses. If you specify an external routine, SQL generates an
error.

6–464 SQL Statements

CREATE OUTLINE Statement

• The order of the queries in an outline matches the order of optimization,
not the order of execution. The query outline generated by Oracle Rdb
appears with comments after the QUERY keyword in the outline to make
reading easier. See the Examples section.

• The query outline generated by Oracle Rdb may not have a query
corresponding to each statement within the procedure.

• Not all statements require the query optimizer. For example, TRACE and
SET statements that do not reference tables do not require the optimizer.

• Subqueries in IF and CASE statements may be lifted into a previous
statement by the optimizer to reduce the overhead associated with that
query.

• Subqueries within an INSERT statement are executed as though SET
statements were performed prior to the INSERT operation.

• INSERT statements are not subject to query optimization.

• During compilation of a constraint or trigger, Oracle Rdb will search for
a query outline with the same name as the trigger or constraint being
compiled. If a match is found, that outline will be used during the query
compilation of the trigger or constraint. If no outline is found matching
the name of the object, Oracle Rdb will then try to locate an appropriate
outline using the BLR ID of the query. For example:

SQL Statements 6–465

CREATE OUTLINE Statement

.

.

.
SQL> CREATE TABLE TAB1 (a1 int CONSTRAINT TAB1NOTNULL NOT NULL ,
cont> a2 char(10),
cont> a3 char(10));
SQL> CREATE OUTLINE TAB1NOTNULL
cont> id ’8755644BCB040948E28A76B6D77CC2D3’
cont> MODE 0
cont> AS (
cont> QUERY (
cont> SUBQUERY (
cont> TAB1 0 ACCESS PATH SEQUENTIAL
cont>)
cont>)
cont>)
cont> COMPLIANCE OPTIONAL ;
SQL> CREATE TRIGGER TAB1TRIG BEFORE INSERT ON TAB1
cont> (UPDATE TAB1 SET a3= ’bbbb’ WHERE a2 = ’aaaa’) FOR EACH ROW;
SQL> CREATE OUTLINE TAB1TRIG
cont> id ’990F90B45658D27D64233D88D16AD273’
cont> MODE 0
cont> AS (
cont> QUERY (
cont> SUBQUERY (
cont> TAB1 0 ACCESS PATH SEQUENTIAL
cont>)
cont>)
cont>)
cont> COMPLIANCE OPTIONAL ;

.

.

.
$ DEFINE RDMS$DEBUG_FLAGS "SnsI"

.

.

.
SQL> INSERT INTO tab1 (a1) VALUE (11);
~S: Trigger name TAB1TRIG
~S: Outline TAB1TRIG used
~S: Outline TAB1NOTNULL used
Conjunct Get Retrieval sequentially of relation TAB1

.

.

.
1 row inserted
SQL> commit;
~S: Constraint TAB1NOTNULL evaluated
Conjunct Get Retrieval sequentially of relation TAB1

.

.

.

6–466 SQL Statements

CREATE OUTLINE Statement

• If the TRACE statement is activated by the RDMS$DEBUG_FLAGS "Xt"
logical name or by the SET FLAGS statement, queries in the TRACE
statement are merged into the query outline for the procedure. For
example, the following query outline contains one query when the TRACE
statement is disabled:

SQL> DECLARE :ln CHAR(40);
SQL>
SQL> BEGIN
cont> TRACE ’Jobs Held: ’,
cont> (SELECT COUNT(*)
cont> FROM job_history
cont> WHERE employee_id = ’00201’);
cont> SELECT last_name
cont> INTO :ln
cont> FROM employees
cont> WHERE employee_id = ’00201’;
cont> END;
-- Oracle Rdb Generated Outline : 28-MAY-1997 16:48
create outline QO_A17FA4B41EF1A68B_00000000
id ’A17FA4B41EF1A68B966C1A0B083BFDD4’
mode 0
as (

query (
-- Select

subquery (
EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;
SQL>

If the query outline is generated with TRACE enabled, two queries appear:
the first is for the subquery in the TRACE statement and the second is for
the singleton SELECT statement:

SQL Statements 6–467

CREATE OUTLINE Statement

SQL> DECLARE :ln CHAR(40);
SQL>
SQL> BEGIN
cont> TRACE ’Jobs Held: ’,
cont> (SELECT COUNT(*)
cont> FROM job_history
cont> WHERE employee_id = ’00201’);
cont> SELECT last_name
cont> INTO :ln
cont> FROM employees
cont> WHERE employee_id = ’00201’;
cont> END;
-- Oracle Rdb Generated Outline : 28-MAY-1997 16:48
create outline QO_A17FA4B41EF1A68B_00000000
id ’A17FA4B41EF1A68B966C1A0B083BFDD4’
mode 0
as (

query (
-- Trace

subquery (
JOB_HISTORY 0 access path index JOB_HISTORY_HASH
)

)
query (

-- Select
subquery (
EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;
~Xt: Jobs Held: 4
SQL>

If this second query outline is used at run time with the TRACE statement
disabled, it cannot be applied to the query, as shown in the following
example:

6–468 SQL Statements

CREATE OUTLINE Statement

SQL> DECLARE :ln CHAR(40);
SQL>
SQL> BEGIN
cont> TRACE ’Jobs Held: ’,
cont> (SELECT COUNT(*)
cont> FROM job_history
cont> WHERE employee_id = ’00201’);
cont> SELECT last_name
cont> INTO :ln
cont> FROM employees
cont> WHERE employee_id = ’00201’;
cont> END;
~S: Outline QO_A17FA4B41EF1A68B_00000000 used
~S: Outline/query mismatch; assuming JOB_HISTORY 0 renamed to EMPLOYEES 0
~S: Full compliance with the outline was not possible
Get Retrieval by index of relation EMPLOYEES
Index name EMPLOYEES_HASH [1:1] Direct lookup

Because the outline was created with compliance optional, the query
outline is abandoned and a new strategy is calculated. If compliance is
mandatory, the query fails.

If any TRACE statement contains a subquery, Oracle Corporation
recommends using two query outlines (if any are required at all) with
different modes in order to run the query with and without TRACE
enabled. That is, when TRACE is enabled, define RDMS$BIND_
OUTLINE_MODE to match the TRACE enabled query outlines.

$ DEFINE RDMS$DEBUG_FLAGS "Xt"
$ DEFINE RDMS$DEBUG_FLAGS_OUTPUT TRACE.DAT
$ DEFINE RDMS$BIND_OUTLINE_MODE 10

Alternatively, use the SET FLAGS statement, which allows the TRACE
flag to be enabled and the MODE established from within an interactive
session or through dynamic SQL. This scheme allows the query to be run
with TRACE enabled or disabled.

• You can use the keyword MODE to set the query outline mode from within
interactive and dynamic SQL session.

SQL> SET FLAGS ’MODE(10),OUTLINE’;
SQL> SHOW FLAGS

SQL Statements 6–469

CREATE OUTLINE Statement

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,OUTLINE,MODE(10)
SQL> SELECT COUNT(*) FROM employees;
-- Rdb Generated Outline : 30-MAY-1997 16:35
create outline QO_B3F54F772CC05435_0000000A
id ’B3F54F772CC054350B2B454D95537995’
mode 10 as (
query (

-- For loop
subquery (
subquery (
EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)

)
)

)
compliance optional ;

100
1 row selected

The following options are accepted:

NOMODE - this is the same as MODE(0) and disables the display of
the mode in the SHOW FLAGS statement. A mode of zero is a valid
mode setting and is the default for generated query otlines.

MODE(n) - where n can be any numeric value (positive or negative).

MODE - the same as MODE(1)

In the previous example, the mode was set to 10 when generating the
query outline. If the generated outline is added to the database, it is used
only when the mode is set to 10, either by the SET FLAGS statement or by
using the logical name RDMS$BIND_OUTLINE_MODE.

• Consider the following procedure, which contains a FOR loop and an
UPDATE statement nested within an outer FOR loop:

6–470 SQL Statements

CREATE OUTLINE Statement

SQL> BEGIN
cont> -- Find the employee and
cont> -- complete their current job, before being promoted
cont> FOR :cur AS EACH ROW OF CURSOR a
cont> FOR SELECT last_name
cont> FROM EMPLOYEES
cont> WHERE employee_id = :emp_id
cont> DO
cont> BEGIN
cont> -- Display some details
cont> TRACE ’Employee: ’, :cur.last_name;
cont>
cont> FOR :cur2 AS EACH ROW OF CURSOR b
cont> FOR SELECT cast(job_start AS DATE ANSI) AS js,
cont> cast(job_end AS DATE ANSI) AS je
cont> FROM JOB_HISTORY
cont> WHERE employee_id = :emp_id
cont> ORDER BY job_start
cont> DO
cont> TRACE ’ Job Duration: ’,
cont> (COALESCE (:cur2.je, current_date) - :cur2.js) YEAR TO MONTH;
cont> END FOR;
cont>
cont> -- Now complete the current job
cont> UPDATE JOB_HISTORY
cont> SET job_end = CAST(current_date AS DATE VMS)
cont> WHERE employee_id = :emp_id;
cont>
cont> END;
cont> END FOR;
cont> END;
-- Oracle Rdb Generated Outline : 29-MAY-1997 22:52
create outline QO_39BBA6C4E902AB2B_00000000
id ’39BBA6C4E902AB2B6A252A71A1CFFB71’
mode 0
as (

query (
-- For loop

subquery (
EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
query (

-- For loop
subquery (
JOB_HISTORY 0 access path index JOB_HISTORY_HASH
)

)
query (

-- Update
subquery (
JOB_HISTORY 0 access path index JOB_HISTORY_HASH

SQL Statements 6–471

CREATE OUTLINE Statement

)
)

)
compliance optional ;

The order of the queries in the query outline represents a flattened tree
structure that represents the complex execution profile of the compound
statement. When extracting this tree structure, Oracle Rdb generates an
order related to a bottom up representation of the optimization phase.

As a result, query outlines generated for any procedure with nested
statements may appear inverted with the first table, EMPLOYEES,
appearing last in the query outline.

-- Oracle Rdb Generated Outline : 29-MAY-1997 22:52
create outline QO_39BBA6C4E902AB2B_00000000
id ’39BBA6C4E902AB2B6A252A71A1CFFB71’
mode 0
as (

query (
-- For loop

subquery (
JOB_HISTORY 0 access path index JOB_HISTORY_HASH
)

)
query (

-- Update
subquery (
JOB_HISTORY 0 access path index JOB_HISTORY_HASH
)

)
query (

-- For loop
subquery (
EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;

• When CREATE OUTLINE . . . ON TRIGGER is used then an outline
for just the first compound trigger action is created. In a future release,
outlines for subsequent actions will be supported.

• CREATE OUTLINE . . . ON COLUMN must reference a computed column,
such as a table COMPUTED BY, AUTOMATIC or view column that
contains select expressions. The CREATE will fail if no select expression is
available.

• Partial outlines for view definitions may not be suitable for use in queries
without providing more details in the outline.

6–472 SQL Statements

CREATE OUTLINE Statement

The following example shows the outline created for the view. Note that
the access path for JOB_defaults to SEQUENTIAL and therefore is not the
best choice for this view. This occurs because the view normally queries
with an EMPLOYEE_ID specified, which would cause the optimizer to
choose index access for the JOB_HISTORY table.

SQL> create outline CURRENT_JOB on view CURRENT_JOB;
SQL> show outline CURRENT_JOB

CURRENT_JOB
Source:
-- Rdb Generated Outline : 16-MAY-2001 15:11
create outline CURRENT_JOB
-- On view CURRENT_JOB
id ’9C6D98DAAF09A3E1796F7D345399028B’
mode 0
as (
query (

-- View
subquery (
JOB_HISTORY 0 access path sequential
join by cross to

EMPLOYEES 1 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;

This alternate definition includes an index on JOB_HISTORY.

SQL> create outline CURRENT_JOB
cont> on view CURRENT_JOB
cont> mode 0
cont> as (
cont> query (
cont> -- View
cont> subquery (
cont> JOB_HISTORY 0 access path index JH_EMPLOYEE_ID
cont> join by cross to
cont> EMPLOYEES 1 access path index EMPLOYEES_HASH
cont>)
cont>)
cont>)
cont> compliance optional
cont> comment is ’qo for view CURRENT_JOB’;

The following query shows the results when applying this query outline.
The table RETIRED_EMPLOYEES, as the name implies, contains all
retired employees. Therefore, there should be no jobs assigned to these
employees and the query should return zero rows.

SQL Statements 6–473

CREATE OUTLINE Statement

SQL> -- should return no rows, since the employee retired and
SQL> -- there is no current job
SQL> set flags ’strategy’;
SQL> select EMPLOYEE_ID
cont> from CURRENT_JOB cj
cont> inner join RETIRED_EMPLOYEES re
cont> using (EMPLOYEE_ID)
cont> where EMPLOYEE_ID = ’00164’;
~S: Outline "CURRENT_JOB" used
Cross block of 2 entries
Cross block entry 1
Index only retrieval of relation RETIRED_EMPLOYEES
Index name RE_EMPLOYEE_ID [1:1]
Cross block entry 2
Cross block of 2 entries
Cross block entry 1
Conjunct
Leaf#01 FFirst JOB_HISTORY Card=274
BgrNdx1 JH_EMPLOYEE_ID [1:1] Bool Fan=17
Cross block entry 2
Conjunct Index only retrieval of relation EMPLOYEES
Index name EMPLOYEES_HASH [1:1] Direct lookup
0 rows selected
SQL>

Note that the query outline CURRENT_JOB is reported as being used.

• During definition of the query outline, the query definitions associated with
the specified object are used to check for possible syntax problems, such
as referencing a table within the query outline that does not take part
within the query of the designated database object. Various exceptions are
displayed informing the user of the syntax error.

• When Rdb compiles a query that references a view, it will implicitly use the
view name to locate a matching query outline. This allows the database
administrator to create partial query outlines that tune just that part of
the query involving the view. However, if the query outline is named with
the same name as a view but does not follow the structure of the view then
a RDMS-F-LEVEL_MISMATCH error will be reported.

The following example shows this problem.

SQL> create outline CURRENT_JOB
cont> from (select * from CURRENT_JOB limit to 1 rows);
SQL>
SQL> show outline CURRENT_JOB;

CURRENT_JOB
Source:

6–474 SQL Statements

CREATE OUTLINE Statement

-- Rdb Generated Outline : 2-SEP-2010 10:24
create outline CURRENT_JOB
id ’E9968EFAF723ED23DF59216A5DDE4C7D’
mode 0
as (

query (
-- For loop

subquery (
subquery (
EMPLOYEES 1 access path index EMP_EMPLOYEE_ID
join by match to

JOB_HISTORY 0 access path index JH_EMPLOYEE_ID
)

)
)

)
compliance optional ;
SQL>
SQL> set flags ’strategy,detail(2)’;
SQL>
SQL> select * from CURRENT_JOB limit to 1 rows;
~S: Outline "CURRENT_JOB" used
%RDMS-F-LEVEL_MISMATCH, the table/subquery nesting levels
in the query outline do not match the query
SQL>

To resolve this problem the database administrator must change the name
of the outline so that it is not assumed to describe the view record selection
definition.

SQL Statements 6–475

CREATE OUTLINE Statement

SQL> create outline CURRENT_JOB_REF
cont> from (select * from CURRENT_JOB limit to 1 rows);
SQL>
SQL> set flags ’strategy,detail(2)’;
SQL>
SQL> select * from CURRENT_JOB limit to 1 rows;
~S: Outline "CURRENT_JOB_REF" used
...
LAST_NAME FIRST_NAME EMPLOYEE_ID JOB_CODE DEPARTMENT_CODE

SUPERVISOR_ID JOB_START
Toliver Alvin 00164 DMGR MBMN
00228 21-Sep-1981
1 row selected
SQL>
SQL> select * from CURRENT_JOB where employee_id = ’00164’
cont> optimize using CURRENT_JOB_REF;
~S: Outline "CURRENT_JOB_REF" used
...
LAST_NAME FIRST_NAME EMPLOYEE_ID JOB_CODE DEPARTMENT_CODE

SUPERVISOR_ID JOB_START
Toliver Alvin 00164 DMGR MBMN
00228 21-Sep-1981
1 row selected
SQL>

Alternatively, create the query outline on the view itself to allow it to be
used more widely.

SQL> create outline CURRENT_JOB
cont> on view CURRENT_JOB;
SQL>
SQL> show outline CURRENT_JOB;

CURRENT_JOB
Source:

6–476 SQL Statements

CREATE OUTLINE Statement

-- Rdb Generated Outline : 2-SEP-2010 10:52
create outline CURRENT_JOB
-- On view CURRENT_JOB
id ’9C6D98DAAF09A3E1796F7D345399028B’
mode 0
as (

query (
-- View

subquery (
EMPLOYEES 1 access path index EMP_EMPLOYEE_ID
join by match to

JOB_HISTORY 0 access path index JH_EMPLOYEE_ID
)

)
)

compliance optional ;
SQL>
SQL> set flags ’strategy,detail(2)’;
SQL>
SQL> select * from CURRENT_JOB limit to 1 rows;
~S: Outline "CURRENT_JOB" used
...
SQL>

SQL Statements 6–477

CREATE OUTLINE Statement

Examples

Example 1: Creating an outline named AVAILABLE_EMPLOYEES

SQL> CREATE OUTLINE available_employees
cont> ID ’09ADFE9073AB383CAABC4567BDEF3832’ MODE 0
cont> AS (
cont> QUERY (
cont> --
cont> -- Cross the employees table with departments table first.
cont> --
cont> employees 0 ACCESS PATH SEQUENTIAL JOIN BY MATCH TO
cont> departments 3 ACCESS PATH INDEX dept_index JOIN BY MATCH TO
cont> SUBQUERY (
cont> job_fitness 2 ACCESS PATH INDEX job_fit_emp, job_fit_dept
cont> JOIN BY CROSS TO
cont> SKILLS 4 ACCESS PATH ANY
cont>) JOIN BY MATCH TO
cont> SUBQUERY (
cont> major_proj 1 ACCESS PATH ANY JOIN BY CROSS TO
cont> education 6 ACCESS PATH ANY
cont>) JOIN BY CROSS TO
cont> research_projects 5 ACCESS PATH ANY UNION WITH
cont> --
cont> -- Always do the union with employees table last
cont> --
cont> employees 7 ACCESS PATH ANY
cont>)
cont>)
cont> COMPLIANCE OPTIONAL
cont> COMMENT IS ’Available employees’;

6–478 SQL Statements

CREATE OUTLINE Statement

Example 2: Creating an outline using the FROM clause

SQL> CREATE OUTLINE degrees_for_emps_over_65
cont> FROM
cont> (SELECT e.last_name, e.first_name, e.employee_id,
cont> d.degree, d.year_given
cont> FROM employees e, degrees d
cont> WHERE e.birthday < ’31-Dec-1930’
cont> AND e.employee_id = d.employee_id
cont> ORDER BY e.last_name)
cont> USING
cont> (QUERY
cont> (SUBQUERY
cont> (degrees 1 ACCESS PATH SEQUENTIAL
cont> JOIN BY CROSS TO
cont> employees 0 ACCESS PATH ANY
cont>)
cont>)
cont>)
cont> COMPLIANCE OPTIONAL
cont> COMMENT IS ’Outline to find employees over age 65 with college degrees’;
SQL> --
SQL> SHOW OUTLINE degrees_for_emps_over_65

DEGREES_FOR_EMPS_OVER_65
Comment: Outline to find employees over age 65 with college degrees
Source:

-- Rdb Generated Outline : 13-NOV-1995 15:28
create outline DEGREES_FOR_EMPS_OVER_65
id ’B6923A6572B28E734D6F9E8E01598CD8’
mode 0
as (

query (
subquery (
DEGREES 1 access path sequential
join by cross to

EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;

Example 3: Creating an outline using the ON FUNCTION clause

SQL> CREATE OUTLINE out1
cont> ON FUNCTION NAME function1;
SQL> COMMIT;
SQL> SHOW OUTLINE out1

OUT1
Source:

SQL Statements 6–479

CREATE OUTLINE Statement

-- Rdb Generated Outline : 2-FEB-1996 15:46
create outline OUT1
id ’264A6DDADCB483AE5B2CDF629C9C8C0F’
mode 0
as (

query (
subquery (
EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;

Example 4: Creating an outline on a procedure that accesses a declared
local temporary table (see the CREATE MODULE statement for the stored
procedure and temporary table definition)

SQL> CREATE OUTLINE outline1
cont> ON PROCEDURE NAME paycheck_ins_decl
cont> MODE 0
cont> AS (
cont> QUERY (
cont> module.paycheck_decl_tab MODULE paycheck_decl_mod
cont> 0
cont> ACCESS PATH SEQUENTIAL
cont>)
cont>)
cont> COMPLIANCE OPTIONAL;
SQL> SHOW OUTLINE outline1

OUTLINE1
Source:

create outline OUTLINE1
mode 0
as (

query (
PAYCHECK_DECL_TAB MODULE PAYCHECK_DECL_MOD 0
access path sequential
)

)
compliance optional ;

6–480 SQL Statements

CREATE OUTLINE Statement

Example 5: New Output from Query Outlines

SQL> BEGIN
cont> DECLARE :x INTEGER;
cont> -- Assignment
cont> SET :x = (SELECT COUNT(*) FROM TOUT_1);
cont> -- Delete statement
cont> DELETE FROM TOUT_1;
cont> -- Update statement
cont> UPDATE TOUT_1
cont> SET a = (SELECT AVG(a) FROM TOUT_2)
cont> WHERE a IS NULL;
cont> -- Singleton Select
cont> SELECT a INTO :x
cont> FROM TOUT_1
cont> WHERE a = 1;
cont> -- Trace (nothing if TRACE is disabled)
cont> TRACE ’The first value: ’, (SELECT a FROM TOUT_1 LIMIT TO 1 ROW);
cont> END;

The query outline generated by Oracle Rdb appears with comments after the
QUERY keyword in the outline.

-- Rdb Generated Outline : 29-MAY-1997 23:17
create outline QO_C11395E6020C6FFA_00000000
id ’C11395E6020C6FFA5A183A6CCE7C1F33’
mode 0
as (

query (
-- Set

subquery (
TOUT_1 0 access path sequential
)

)
query (

-- Delete
subquery (
TOUT_1 0 access path sequential
)

)
query (

-- Update
subquery (
subquery (
TOUT_2 1 access path sequential
)
join by cross to

subquery (
TOUT_1 0 access path sequential
)

)
)

SQL Statements 6–481

CREATE OUTLINE Statement

query (
-- Select

subquery (
TOUT_1 0 access path sequential
)

)
query (

-- Trace
subquery (
TOUT_1 0 access path sequential
)

)
)

compliance optional ;

6–482 SQL Statements

CREATE PROCEDURE Statement

CREATE PROCEDURE Statement

Creates an external procedure as a schema object in an Oracle Rdb database.

The CREATE PROCEDURE statement is documented under the CREATE
ROUTINE Statement. For complete information on creating an external
procedure definition, see the CREATE ROUTINE Statement.

SQL Statements 6–483

CREATE PROFILE Statement

CREATE PROFILE Statement

Creates a profile that extends a user definition within the database with
special attributes that control transactions and resource usage. When a
user attaches to the database using ATTACH, CONNECT or SET SESSION
AUTHORIZATION, they will either load their assigned profile definition or
inherit the default profile (if defined).

Environment

You can use the CREATE PROFILE statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE PROFILE <profilename> profile-options
DEFAULT PROFILE

ALIAS aliasname

profile-options =

COMMENT IS char-literal
/

DEFAULT TRANSACTION txn-options
TRANSACTION MODES (txn-modes)
LIMIT ROWS limit-value

TIME limit-value
CPU TIME limit-value SECONDS

MINUTES

NO DEFAULT TRANSACTION
TRANSACTION MODES
LIMIT CPU TIME

ROWS
TIME

6–484 SQL Statements

CREATE PROFILE Statement

limit-value =

positive-integer-literal
UNLIMITED
DEFAULT

Arguments

ALIAS aliasname
When attached to multiple databases, the aliasname is required to direct the
CREATE command to the appropriate database.

COMMENT IS
This optional clause can be used to add several lines of comment to the
profile object. The comment is displayed by the SHOW PROFILES statement.
Enclose the comment in single quotation marks (’) and separate multiple lines
in a comment with a slash mark (/).

DEFAULT PROFILE
Creates the special profile RDB$DEFAULT_PROFILE. This profile will be
used by any user who is not assigned a profile using the PROFILE clause of
CREATE or ALTER USER.

DEFAULT TRANSACTION
DEFAULT TRANSACTION provides a default transaction for the user. By
default, Oracle Rdb starts a READ WRITE transaction if none is explicitly
started. Use the DECLARE DEFAULT TRANSACTION or START DEFAULT
TRANSACTION statement to make use of this definition. You can override
this clause with a DECLARE, SET or START TRANSACTION statement.

Note

Oracle Rdb does not permit the RESERVING or EVALUATING clauses
to appear in the default transaction.

LIMIT CPU TIME
NO LIMIT CPU TIME
LIMIT CPU TIME sets the maximum CPU time that can be used by the query
compiler. The keyword DEFAULT indicates that no value is defined by this
profile and is equivalent to NO LIMIT CPU TIME.

SQL Statements 6–485

CREATE PROFILE Statement

If a numeric value or the keyword UNLIMITED is specified then this value will
be used even when the SET QUERY LIMIT CPU TIME statement is present
in the session, or when the logical name RDMS$BIND_QG_CPU_TIMEOUT is
defined.

NO LIMIT CPU TIME is the default. Units can be specified as seconds or
minutes.

LIMIT ROWS
NO LIMIT ROWS
LIMIT ROWS sets the maximum number of rows that can be returned by a
query started by the user. The keyword DEFAULT indicates that no value is
defined by this profile and is equivalent to NO LIMIT ROWS.

If a numeric value or the keyword UNLIMITED is specified then this value
will be used even when the SET QUERY LIMIT ROWS statement is present
in the session, or when the logical name RDMS$BIND_QG_REC_LIMIT is
defined.

NO LIMIT ROWS is the default.

LIMIT TIME
NO LIMIT TIME
LIMIT TIME sets the maximum elapsed time that can be used by the query
compiler. The keyword DEFAULT indicates that no value is defined by this
profile and is equivalent to NO LIMIT TIME.

If a numeric value or the keyword UNLIMITED is specified then this value
will be used even when the SET QUERY LIMIT TIME statement is present in
the session, or when the logical name RDMS$BIND_QG_TIMEOUT is defined.

NO LIMIT TIME is the default. Units can be specified as seconds or minutes.

TRANSACTION MODES
NO TRANSACTION MODES
TRANSACTION MODES provides the list of allowable transactions for this
user. Please see the SET TRANSACTION MODES clause of the CREATE
DATABASE and ALTER DATABASE statements for more details of txn-modes.

The transaction modes specified may include modes disabled for all database
users by CREATE, IMPORT, or ALTER DATABASE statements. However,
only the subset allowed by both profile and database settings will be used.
For instance, if the database specifies (READ ONLY, SHARED READ,
PROTECTED READ) and the profile specifies (READ ONLY, SHARED),
the session will be allowed the subset (READ ONLY, SHARED READ).

6–486 SQL Statements

CREATE PROFILE Statement

Usage Notes

• It is possible to restrict the transaction modes to READ ONLY using the
default profile. Use caution in this case because it is possible that no user
will have READ WRITE access to undo such a definition. In this case, you
can define the logical name RDMS$SET_FLAGS to the value PROFILE_
OVERRIDE to allow a suitably privileged user to start a transaction
without using the transaction mode restrictions in the default profile. Such
a user must have database SECURITY privilege, possibly inherited from
the OpenVMS SECURITY process privilege.

• The logical names RDMS$BIND_QG_REC_LIMIT, RDMS$BIND_QG_
TIMEOUT, and RDMS$BIND_QG_TIMEOUT establish the process
defaults for the query limit.

The command SET QUERY LIMIT establishes the session default (unless
already set by the query governor logical names).

The profile LIMIT will either use these established defaults (LIMIT ...
DEFAULT or NO LIMIT) or override them (LIMIT ... UNLIMITED or
specified value).

Examples

Example 1
The following example specifies the allowed transaction modes for any user
assigned this profile.

SQL> CREATE PROFILE DECISION_SUPPORT
cont> COMMENT IS ’limit transactions used by report writers’
cont> TRANSACTION MODES (NO READ WRITE, READ ONLY);

Example 2
This example shows the use of the LIMIT clauses to set boundaries for
standard database users.

SQL Statements 6–487

CREATE PROFILE Statement

SQL> create profile STANDARD_USER
cont> limit rows 10000
cont> limit time 10 minutes
cont> limit cpu time 20 seconds;
SQL> show profile STANDARD_USER;

STANDARD_USER
Limit rows 10000
Limit time 10 minutes
Limit CPU time 20 seconds

SQL> alter profile STANDARD_USER
cont> limit time 60 minutes;

Example 3
This example creates a default profile in the database. Any user who is not
given an explicit profile will use this as a default.

SQL> create default profile
cont> alias rdb$dbhandle
cont> default transaction read only wait 20;
SQL> show profile
Profiles in database with filename SQL$DATABASE

LIMIT_ROWS
RDB$DEFAULT_PROFILE

SQL> show profile RDB$DEFAULT_PROFILE
RDB$DEFAULT_PROFILE
Default transaction read only wait 20

6–488 SQL Statements

CREATE ROLE Statement

CREATE ROLE Statement

Creates a role to which privileges and other roles can be granted. A role
can be granted to a user or another role. For example, you can create a
role for members of a department. When a user leaves the department, the
departmental role can be revoked from that user and thus exclude that user’s
access to the departmental data.

Environment

You can use the CREATE ROLE statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE ROLE <role-name>

IDENTIFIED EXTERNALLY
NOT IDENTIFIED

COMMENT IS ’string’
/

Arguments

COMMENT IS ’string’
Adds a comment about the role. SQL displays the text of the comment when it
executes a SHOW ROLES statement. Enclose the comment in single quotation
marks (’) and separate multiple lines in a comment with a slash mark (/).

IDENTIFIED EXTERNALLY
The IDENTIFIED EXERNALLY clause indicates that SQL should inherit the
roles defined by the facilities of the operating system, such as rights identifiers.
When a session is started, any role that is defined externally is established as
part of the current user’s profile.

SQL Statements 6–489

CREATE ROLE Statement

NOT IDENTIFIED
Indicates that the role is used only with the database. The database must have
SECURITY CHECKING IS INTERNAL set before using this clause.

role-name
A user-supplied name that you assign to the role. The special roles BATCH,
DIALUP, INTERACTIVE, LOCAL, NETWORK, and REMOTE are reserved
names that cannot be specified as a role-name.

Usage Notes

• You must have the SECURITY privilege on the database to create a role.

• The special roles BATCH, DIALUP, INTERACTIVE, LOCAL, NETWORK,
and REMOTE are granted by the OpenVMS operating system when the
user process is created. Therefore, these roles are reserved names and
cannot be used as the role-name in the CREATE ROLE statement.

• Database roles will be created implicitly by the GRANT statement in any
database set as SECURITY CHECKING IS INTERNAL if the role is not
already defined and matches the name of an existing OpenVMS rights
identifier.

• The role-name can be any valid SQL-name. If IDENTIFIED EXTERNALLY
is used, the name must conform to OpenVMS naming conventions, that
is, uppercase letters, numbers, underscore and ’$’ with no spaces of
punctuation.

• Roles can be created for reference when SECURITY CHECKING IS
EXTERNAL is set.

• If SECURITY CHECKING IS INTERNAL is set, then the GRANT
statement will implicitly perform a CREATE ROLE if the role is not
defined in the database and the name exists as an OpenVMS rights
identifier. The following example causes both the user and role to be
created.

SQL> grant ADMIN_USER to SMITH;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-PRFCREATED, some users or roles were created
SQL> show users
Users in database with filename personnel

SMITH
SQL> show roles
Roles in database with filename personnel

ADMIN_USER

6–490 SQL Statements

CREATE ROLE Statement

The warning message alerts the database administrator that some
implicit actions were performed, but otherwise the GRANT statement
was successful.

• You can display existing roles defined for a database by issuing a SHOW
ROLES statement.

Examples

Example 1: Creating a Role

SQL> ALTER DATABASE FILENAME ’mf_personnel.rdb’
cont> SECURITY CHECKING IS INTERNAL;
SQL> ATTACH ’FILENAME mf_personnel.rdb’;
SQL> CREATE ROLE WRITER;
SQL> SHOW ROLES;
Roles in database with filename mf_personnel.rdb

WRITER

SQL Statements 6–491

CREATE ROLE Statement

Example 2: Creating Roles and Granting Privileges to Those Roles

SQL> ALTER DATABASE FILENAME mf_personnel.rdb
cont> SECURITY CHECKING IS INTERNAL;
SQL> -- Create a role for employees in the payroll department
SQL> ATTACH ’FILENAME MF_PERSONNEL.RDB’;
SQL> CREATE ROLE PAYROLL
cont> COMMENT IS ’This role allows access to various tables’
cont> / ’and procedures for use by the PAYROLL dept.’;
SQL> -- Create another role for a subset of employees.
SQL> CREATE ROLE ANNUAL_LEAVE
cont> COMMENT IS ’This role is granted to PAYROLL personnel’
cont> / ’who adjust the annual leave data’;
SQL> -- Grant EXECUTE privilege on module and ALL privilege on table
SQL> -- SALARY_HISTORY to all employees to whom the PAYROLL role has
SQL> -- been granted. Grant EXECUTE privilege on module LEAVE_ADJUSTMENT
SQL> -- only to those employees who have been granted both the PAYROLL
SQL> -- and ANNUAL_LEAVE roles.
SQL> GRANT EXECUTE ON MODULE PAYROLL_UTILITIES TO PAYROLL;
SQL> GRANT ALL ON TABLE SALARY_HISTORY TO PAYROLL;
SQL> GRANT EXECUTE ON MODULE LEAVE_ADJUSTMENT
cont> to PAYROLL, ANNUAL_LEAVE;
SQL> -- User STUART joins the personnel department. Grant him
SQL> -- the PAYROLL and ANNUAL_LEAVE roles so that he can
SQL> -- perform all functions in the payroll department.
SQL> CREATE USER STUART
cont> IDENTIFIED EXTERNALLY
SQL> GRANT PAYROLL, ANNUAL_LEAVE TO STUART;
SQL> -- User STUART is promoted to supervisor and thus
SQL> -- no longer needs access to the objects controlled by
SQL> -- the ANNUAL_LEAVE role. Revoke that role from user
SQL> -- STUART.
SQL> REVOKE ANNUAL_LEAVE FROM STUART;

Example 3: Creating roles explictly using CREATE ROLE and implicitly using
GRANT

This examples demonstrates creating roles that match an OpenVMS rights
identifiers. The CREATE ROLE statement is used first, and then the
GRANT statement. GRANT issues a warning message to alert the database
administrator of the side-effect of the GRANT statement.

6–492 SQL Statements

CREATE ROLE Statement

SQL> create database
cont> filename SAMPLE
cont> security checking is internal;
SQL> show roles;
Roles in database with filename sample
No Roles found
SQL> create role dba_mgr identified externally;
SQL> show roles;
Roles in database with filename sample

DBA_MGR
SQL> grant saldb_user to smith;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-PRFCREATED, some users or roles were created
SQL> show roles;
Roles in database with filename sample

DBA_MGR
SALDB_USER

SQL>

SQL Statements 6–493

CREATE ROUTINE Statement

CREATE ROUTINE Statement

Creates an external routine definition as a schema object in an Oracle Rdb
database. External routine refers to both external functions and external
procedures. A routine definition stores information in the database about a
subprogram (a function or procedure) written in a 3GL language. The routine
definition and the routine image are independent of each other, meaning one
can exist without the other. However, to invoke an external routine, you need
both the routine definition and routine image.

SQL can invoke an external function from anywhere you can specify a value
expression. External procedures are invoked using the CALL Statement for
Compound Statements.

Environment

You can use the CREATE FUNCTION and CREATE PROCEDURE statements:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE FUNCTION <external-routine-name>
PROCEDURE

STORED NAME IS <identifier>

()
parameter-list

,

;
returns-clause LANGUAGE SQL

external-body-clause

6–494 SQL Statements

CREATE ROUTINE Statement

parameter-list =

data-type
IN <parameter-name> <domain-name>
OUT
INOUT

DEFAULT value-expr mechanism-clause

COMMENT IS ’string’
/

mechanism-clause =

BY DESCRIPTOR
LENGTH
REFERENCE
VALUE

external-body-clause =

EXTERNAL
NAME <external-body-name>

LANGUAGE language-name
external-location-clause

PARAMETER STYLE GENERAL
GENERAL PARAMETER STYLE

external-body-clause-2

SQL Statements 6–495

CREATE ROUTINE Statement

external-body-clause-2 =

COMMENT IS ’<string> ’
/

bind-site-clause
bind-scope-clause
notify-clause
CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
USAGE IS LOCAL

GLOBAL

NOT VARIANT
DETERMINISTIC

external-location-clause =

DEFAULT LOCATION
LOCATION ’<image-location>’

WITH ALL LOGICAL_NAME TRANSLATION
SYSTEM

language-name =

ADA
C
COBOL
FORTRAN
PASCAL
GENERAL

bind-site-clause =

BIND ON CLIENT SITE
SERVER

bind-scope-clause =

BIND SCOPE CONNECT
TRANSACTION

6–496 SQL Statements

CREATE ROUTINE Statement

notify-clause =

NOTIFY notify-entry-name ON BIND
CONNECT
TRANSACTION

,

Arguments

BIND ON CLIENT SITE
BIND ON SERVER SITE
Selects the execution model and environment for external routine execution.

CLIENT site binding causes the external routine to be activated and executed
in the OpenVMS database client (application) process. This is the default
binding. This binding offers the most efficient execution characteristics,
allows sharing resources such as I/O devices, and allows debugging of external
routines as if they were part of the client application. However, this binding
may suffer from address space limitations. Because it shares virtual memory
with the database buffers, this binding is restricted to the client process
system user environment, and prohibits external routine execution in cases of
an application running with elevated privileges.

SERVER site binding causes the external routine to be activated in a separate
process from the database client and server. The process is started on the
same node at the database process. This binding offers reasonable execution
characteristics, a larger address space, a true session user environment, and
has no restrictions regarding client process elevated privileges. However, this
binding does not permit sharing resources such as I/O devices with the client
(in particular, there is no connection to the client interactive terminal), and
debugging of routines is generally not possible.

BIND SCOPE CONNECT
BIND SCOPE TRANSACTION
Defines the scope during which an external routine is activated and at what
point the external routine is deactivated. The default scope is CONNECT.

• CONNECT

An active routine is deactivated when you detach from the database (or
exit without detaching).

• TRANSACTION

SQL Statements 6–497

CREATE ROUTINE Statement

An active routine is deactivated when a transaction is terminated
(COMMIT or ROLLBACK). In the event that a transaction never occurs,
the scope reverts to CONNECT.

COMMENT IS ’string’
A description about the nature of the parameter or external routine. SQL
displays the text of the comment when you execute a SHOW FUNCTION or
SHOW PROCEDURE statement. Enclose the comment in single quotation
marks (’) and separate multiple lines in a comment with a slash (/).

DEFAULT value-expr
Specifies the default value of a parameter for a function or procedure defined
with mode IN. If you omit this parameter or if the Call statement argument
list or function invocation specifies the DEFAULT keyword, then the value-expr
specified with this clause is used. The parameter uses NULL as the default if
you do not specify a value expression explicitly.

DEFAULT LOCATION
LOCATION ’image-location’
A default or specific location for the external routine image. The resulting file
specification must include the type .exe.

This can be an image file specification or merely a logical name.

SQL selects a routine based on a combination of factors:

• Image string

The location defaults to DEFAULT LOCATION, which represents the file
specification string RDB$ROUTINES.

• Logical name translation

The WITH ALL LOGICAL_NAME TRANSLATION and the WITH
SYSTEM LOGICAL_NAME TRANSLATION clauses specify how logical
names in the location string are to be translated.

If no translation option is specified, or if WITH ALL LOGICAL_NAME
TRANSLATION is specified, logical names are translated in the default
manner.

If WITH SYSTEM LOGICAL_NAME TRANSLATION is specified, any
logical names in the location string are expanded using only EXECUTIVE_
MODE logical names from the SYSTEM logical name table.

6–498 SQL Statements

CREATE ROUTINE Statement

DETERMINISTIC
NOT DETERMINISTIC
The clause controls the evaluation of an external function in the scope of a
query:

• NOT DETERMINISTIC

Specifying the NOT DETERMINISTIC clause forces evaluation of
corresponding functions (in scope of a single query) every time the function
appears. If a function can return a different result each time it is invoked,
you should use the DETERMINISTIC clause.

• DETERMINISTIC

Specifying the DETERMINISTIC clause can result in a single evaluation
of corresponding function expressions (in scope of a single query), and the
resulting value is used in all occurrences of the corresponding function
expression. When you use the DETERMINISTIC clause, Oracle Rdb
evaluates whether or not to invoke the function each time it is used.

For example:

SELECT * FROM T1 WHERE F1() > 0 AND F1() < 20;

If you define the F1 function as DETERMINISTIC, the function F1() may
be evaluated just once depending on the optimizer. If you define the F1
function as NOT DETERMINISTIC, the function F1() is evaluated twice.

DETERMINISTIC is the default.

The DETERMINISTIC or NOT DETERMINISTIC clause is not allowed on
procedure definitions.

external-body-clause
Identifies key characteristics of the routine: its name, where the executable
image of the routine is located, the language in which the routine is coded, and
so forth.

external-body-name
The name of the external routine. If you do not specify a name, SQL uses the
name you specify in the external-routine-name clause.

This name defines the routine entry address that is called for each invocation
of the routine body. The named routine must exist in the external routine
image selected by the location clause.

Unquoted names are converted to uppercase characters.

SQL Statements 6–499

CREATE ROUTINE Statement

external-location-clause
A file specification referencing the image that contains the routine body and
optional notify entry points.

external-routine-name
The name of the external routine. The name must be unique among external
and stored routines in the schema and can be qualified with an alias or, in a
multischema database, a schema name.

FUNCTION
Creates an external function definition.

A function optionally accepts a list of IN parameters, always returns a value,
and is referenced by name as an element of a value expression.

GENERAL PARAMETER STYLE
This is synonymous with PARAMETER STYLE GENERAL and is deprecated.

LANGUAGE language-name
The name of the host language in which the external routine was coded.
You can specify ADA, C, COBOL, FORTRAN, PASCAL, or GENERAL. The
GENERAL keyword allows you to call routines written in any language.

See the Usage Notes for more language-specific information.

LANGUAGE SQL
Names the language that calls the routine.

mechanism-clause
Defines the passing mechanism. The following list describes the passing
mechanisms.

• BY DESCRIPTOR

Allows passing character data with any parameter access mode to routines
compiled by language compilers that implement the OpenVMS calling
standard.

• BY LENGTH

The LENGTH passing mechanism is the same as the DESCRIPTOR
passing mechanism.

• BY REFERENCE

Allows passing data with any parameter access mode as a reference to the
actual data.

6–500 SQL Statements

CREATE ROUTINE Statement

This is the default passing mechanism for parameters. This is also the
default passing mechanism for a function value returning character data.

• BY VALUE

Allows passing data with the IN parameter access mode to a routine as a
value and allows functions to return a value.

This is the default passing mechanism for a function value returning
noncharacter data.

notify-clause
Specifies the name of a second external routine called (notified) when certain
external routine or database-related events occur. This name defines the
routine entry address that is called, for each invocation of the notify routine.
The named routine must exist in the external routine image selected by the
location clause.

The events of interest to the notify routine are ON BIND, ON CONNECT, and
ON TRANSACTION. Multiple events can be specified.

The following describes the events and scope of each event:

BIND Routine activation to routine deactivation
CONNECT Database attach to database disconnect
TRANSACTION Start transaction to commit or roll back transaction

parameter-list
The optional parameters of the external routine. For each parameter you
can specify a parameter access mode (IN, OUT, and INOUT), a parameter
name, a data type, and a passing mechanism (by DESCRIPTOR, LENGTH,
REFERENCE, or VALUE).

The parameter access mode (IN, OUT, and INOUT) is optional and specifies
how the parameter is accessed (whether it is read, written, or both). IN
signifies read only, OUT signifies write only, and INOUT signifies read and
write. The parameter access mode defaults to IN.

Only the IN parameter access mode may be specified with parameters to an
external function. Any of the parameter access modes (IN, OUT, and INOUT)
may be specified with parameters to an external procedure.

The optional parameter name is prefixed with a colon (:). The parameter name
must be unique within the external routine parameters.

The data type is required and describes the type of parameter using either an
SQL data type or a domain name.

You cannot declare a parameter as the LIST OF BYTE VARYING data type.

SQL Statements 6–501

CREATE ROUTINE Statement

PARAMETER STYLE GENERAL
Passes arguments and returns values in a manner similar to the OpenVMS
convention for passing arguments and returning function values.

PROCEDURE
Creates an external procedure definition.

A procedure optionally accepts a list of IN, OUT, or INOUT parameters, and is
referenced by name in a CALL statement.

RETURNS result-data-type
RETURNS domain-name
Describes a function (returned) value. You can specify a data type and a
passing mechanism (BY DESCRIPTOR, LENGTH, REFERENCE, or VALUE).
The function value is, by definition, an OUT access mode value.

The data type is required and describes the type of parameter using either an
SQL data type or a domain name.

You cannot declare a function value as the LIST OF BYTE VARYING data
type.

STORED NAME IS identifier
The name that Oracle Rdb uses to access the routine when defined in a
multischema database. The stored name allows you to access multischema
definitions using interfaces that do not recognize multiple schemas in one
database. You cannot specify a stored name for a routine in a database that
does not allow multiple schemas. For more information about stored names,
see Section 2.2.18.

USAGE IS
Specifies how the function or procedure can be called:

• USAGE IS GLOBAL indicates that the function or procedure can be called
outside the current module. This is the default.

• USAGE IS LOCAL specifies that the routine is restricted to references
within the module. This clause is provided for compatibility with CREATE
MODULE but is not allowed for CREATE FUNCTION or CREATE
PROCEDURE.

VARIANT
NOT VARIANT
These clauses are synonyms for the DETERMINISTIC and NOT DETERMINISTIC
clauses. The DETERMINISTIC clause indicates that the same inputs to the
function will generate the same output. It is the same as the NOT VARIANT

6–502 SQL Statements

CREATE ROUTINE Statement

clause. The NOT DETERMINISTIC clause indicates that the output of the
function does not depend on the inputs. It is the same as the VARIANT clause.
This clause is deprecated. Use DETERMINISTIC instead.

Usage Notes

• You must have the CREATE database privilege on the database to create
an external routine.

• You can invoke an external function from any SQL value-expression
argument, such as in a WHERE clause, SELECT statement, INSERT
statement, COMPUTED BY clause, stored procedure, constraint
definitions, or trigger definitions.

For information about invoking an external function from triggers, see the
Oracle Rdb Guide to Database Design and Definition.

• You can invoke an external procedure using the CALL statement within a
compound statement.

• No more than 255 arguments may be passed to an external routine.

• Certain languages do not accept parameters passed by VALUE.

• Certain languages, such as FORTRAN, are constrained by syntax that
prevents returning function values by REFERENCE.

• The procedure parameter access modes, INOUT and OUT, are incompatible
with the BY VALUE passing mechanism for external procedures.

• Only minimal defaults are provided for the location file specification.
If not provided as part of the file specification or logical name, the
device and directory default to the current default device and directory
(SYS$DISK:[] if SYS$DISK references only a device or devices; or
SYS$DISK: if SYS$DISK is a search list that references a directory).
There is no default for file type.

• The language used to implement the external routine may limit the data
types that can be specified. Refer to the language-specific documentation
for more information.

• Specifying a specific language can alter the passing mechanism semantics
for parameters and function values with character data types. Language
C causes character data types passed by REFERENCE to be passed as
null-terminated strings.

SQL Statements 6–503

CREATE ROUTINE Statement

• The PARAMETER STYLE GENERAL clause does not allow arguments
that have NULL values.

• The maximum length for each string literal in a comment is 1024
characters.

• An external routine can attach to databases and execute SQL data
manipulation statements using those databases, for example, through
embedded SQL.

• An external routine cannot execute data definition statements.

• A single routine image may be referenced by multiple routines defined in a
single database or by routines registered in multiple, attached databases.

• See the Oracle Rdb Guide to SQL Programming for more information
about:

– Creating external routines

– Invoking external routines from applications

– Parameters and passing mechanisms

– Routine activation and deactivation

– Using notification routines

– Execution environments

– Exceptions

– Limitations

– Recommendations

– Common problems and solutions

• You must execute this statement in a read/write transaction. If you
issue this statement when there is no active transaction, SQL starts a
transaction with the characteristics specified in the most recent DECLARE
TRANSACTION statement.

• Only one USAGE IS clause is permitted per routine definition. For
external routines the clause is permitted in either the routine header, or in
the external routine definition.

• If more than one routine wishes to share the same database context then
they must be created together in a CREATE MODULE statement. See
CREATE MODULE Statement for further details.

6–504 SQL Statements

CREATE ROUTINE Statement

• If all functions and procedures are declared as USAGE IS LOCAL, then it
will not be possible to execute any routines in that module. The CREATE
MODULE statement will fail as shown in the following example.

SQL> create module M
cont> procedure p0 (in :a integer)
cont> usage is local;
cont> begin
cont> trace ’p0: ’, :a;
cont> end;
cont> end;
cont> end module;
%SQL-W-LOCALNEVER, Local routine "P0" is never called
%SQL-F-MODALLLOCAL, Module "M" only contains local routines - invalid
module

Examples

Example 1: System provided integer absolute value routine

SQL> CREATE FUNCTION IABS (IN INTEGER BY REFERENCE)
cont> RETURNS INTEGER BY VALUE;
cont> EXTERNAL NAME MTH$JIABS
cont> LOCATION ’SYS$SHARE:DPML$SHR.EXE’
cont> LANGUAGE GENERAL
cont> PARAMETER STYLE GENERAL
cont> NOT DETERMINISTIC;
SQL> --
SQL> SELECT IABS(-33) FROM JOBS LIMIT TO 1 ROW;

33
1 row selected

Example 2: Using the NOT DETERMINISTIC clause, instead of the
DETERMINISTIC clause

The first CREATE FUNCTION statement in the following example creates
a function with the DETERMINISTIC clause. The DETERMINISTIC clause
indicates to Oracle Rdb that the function would return the same result no
matter how many times it is called. Because the argument is a string literal
(and could never change), Oracle Rdb optimizes the entire function call so that
it is not called in subsequent select statements.

SQL Statements 6–505

CREATE ROUTINE Statement

SQL> -- Create a function with a DETERMINISTIC clause.
SQL> CREATE function DO_COM (IN VARCHAR(255) BY DESCRIPTOR)
cont> RETURNS INTEGER;
cont> EXTERNAL NAME LIB$SPAWN
cont> LOCATION ’SYS$SHARE:LIBRTL.EXE’
cont> LANGUAGE GENERAL
cont> PARAMETER STYLE GENERAL
cont> DETERMINISTIC;
SQL> --
SQL> -- Use a SELECT statement to pass a string literal to the function.
SQL> --
SQL> -- Because Oracle Rdb optimizes functions with the DETERMINISTIC
SQL> -- clause, and the function is passed a string literal,
SQL> -- Oracle Rdb does not call the function from subsequent
SQL> -- statements.
SQL> --
SQL> SELECT DO_COM(’WRITE SYS$OUTPUT "HELLO"’), employee_id FROM employees
cont> LIMIT TO 5 ROWS;
HELLO

DO_COM EMPLOYEE_ID
1 00164
1 00165
1 00166
1 00167
1 00168

5 rows selected
SQL> --
SQL> -- Use the NOT DETERMINISTIC clause to create the function:
SQL> --
SQL> CREATE function DO_COM (IN VARCHAR(255) BY DESCRIPTOR)
cont> RETURNS INTEGER;
cont> EXTERNAL NAME lib$SPAWN
cont> LOCATION ’SYS$SHARE:LIBRTL.EXE’
cont> LANGUAGE GENERAL
cont> PARAMETER STYLE GENERAL
cont> NOT DETERMINISTIC;
SQL> SELECT DO_COM(’WRITE SYS$OUTPUT "HELLO"’), EMPLOYEE_ID FROM EMPLOYEES
cont> LIMIT TO 5 ROWS;
HELLO
HELLO

DO_COM EMPLOYEE_ID
1 00164

HELLO
1 00165

HELLO
1 00166

HELLO
1 00167
1 00168

5 rows selected

Example 3: External function and external procedure definition

6–506 SQL Statements

CREATE ROUTINE Statement

The following example demonstrates:

• An external function and an external procedure

• Both CLIENT SITE and SERVER SITE binding

• BIND SCOPE

• A NOTIFY routine and events

• SQL callback using embedded SQL and SQL module language

• SQL$PRE options required when using callback

• Linker options required when using callback

In this example, a new column is added to the EMPLOYEES table in the
MF_PERSONNEL database. External routines are used to set this column
to spaces and to the SOUNDEX value corresponding to the various employee
names. Transaction control at the application level (in this instance, in SQL) in
conjunction with a notify routine demonstrates how the actions of the external
routines can be affected by actions of the application.

The space-filling is performed by an external function, CLEAR_SOUNDEX,
(written in C) containing embedded SQL, which opens another instance of the
MF_PERSONNEL database and leaves it open until deactivated.

The SOUNDEX name-setting is performed by an external procedure (written
in FORTRAN), assisted by a notify routine (written in FORTRAN) which
performs the database connection and transaction control. All the database
operations are performed by SQL module language routines. The procedure
also opens another instance of the MF_PERSONNEL database, which is
disconnected by the notify routine when the routine is deactivated at the end
of the transaction. Display statements executed by the notify routine serve to
demonstrate the progress of the database operations.

SQL Statements 6–507

CREATE ROUTINE Statement

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> --
SQL> -- Add the new column SOUNDEX_NAME to the EMPLOYEES table.
SQL> --
SQL> ALTER TABLE EMPLOYEES ADD SOUNDEX_NAME CHAR(4);
SQL> --
SQL> -- Define the CLEAR_SOUNDEX function.
SQL> --
SQL> CREATE FUNCTION CLEAR_SOUNDEX ()
cont> RETURNS INTEGER BY VALUE;
cont> EXTERNAL NAME CLEAR_SOUNDEX
cont> LOCATION ’CLEAR_SOUNDEX.EXE’
cont> LANGUAGE C PARAMETER STYLE GENERAL NOT DETERMINISTIC
cont> BIND ON SERVER SITE BIND SCOPE CONNECT;
SQL> --
SQL> -- Define the ADD_SOUNDEX_NAME procedure.
SQL> --
SQL> CREATE PROCEDURE ADD_SOUNDEX_NAME
cont> (INOUT INTEGER BY REFERENCE);
cont> EXTERNAL NAME ADD_SOUNDEX_NAME
cont> LOCATION ’ADD_SOUNDEX.EXE’
cont> LANGUAGE FORTRAN PARAMETER STYLE GENERAL
cont> BIND ON CLIENT SITE BIND SCOPE TRANSACTION
cont> NOTIFY ADD_SOUNDEX_NOTIFY ON BIND, TRANSACTION;
SQL> --
SQL> COMMIT;
SQL> DISCONNECT ALL;
SQL> EXIT;

6–508 SQL Statements

CREATE ROUTINE Statement

Example 4: The CLEAR_SOUNDEX.SC program written in C

/* Set the soundex_name column to spaces, return any error as function value */

static int state = 0;

extern int clear_soundex () {
exec sql include sqlca ;
exec sql declare alias filename MF_PERSONNEL;
if (state == 0) {

exec sql attach ’filename MF_PERSONNEL’;
state = 1;

}
exec sql set transaction read write;
if (SQLCA.SQLCODE < 0)

return SQLCA.SQLCODE;
exec sql update employees set soundex_name = ’ ’;
if (SQLCA.SQLCODE < 0)

return SQLCA.SQLCODE;
exec sql commit;
if (SQLCA.SQLCODE < 0)

return SQLCA.SQLCODE;
return 0;

}

Example 5: Compiling, creating a linker options file, and linking the CLEAR_
SOUNDEX program

$ SQL$PRE/CC/NOLIST/SQLOPT=ROLLBACK_ON_EXIT CLEAR_SOUNDEX.SC

$ CREATE CLEAR_SOUNDEX.OPT
SYMBOL_VECTOR = (CLEAR_SOUNDEX=PROCEDURE)
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR
PSECT_ATTR=RDB$DBHANDLE,NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR

$ LINK/SHARE=CLEAR_SOUNDEX.EXE -
CLEAR_SOUNDEX.OBJ, SQL$USER:/LIBRARY, -
CLEAR_SOUNDEX.OPT/OPT
SYMBOL_VECTOR = (CLEAR_SOUNDEX=PROCEDURE)
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR
PSECT_ATTR=RDB$DBHANDLE,NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR

SQL Statements 6–509

CREATE ROUTINE Statement

Example 6: The ADD_SOUNDEX.FOR program written in FORTRAN

C Set the soundex values, returning any error in the IN/OUT parameter

SUBROUTINE ADD_SOUNDEX_NAME (ERROR)
CHARACTER ID*5,LAST*14,SX_NAME*4
INTEGER ERROR
ERROR = 0
ID = ’00000’

10 CALL GET_NAME (ID, LAST, ERROR)
IF (ERROR .NE. 0) GO TO 80
CALL MAKE_SOUNDEX_NAME (LAST, SX_NAME)
CALL SET_SOUNDEX_NAME (ID, SX_NAME, ERROR)
IF (ERROR .EQ. 0) GO TO 10

80 IF (ERROR .EQ. 100) ERROR = 0
90 RETURN

END

C Perform database connection and transaction operations for notify events

SUBROUTINE ADD_SOUNDEX_NOTIFY (FUNC, RSV1, RSV2, RSV3)
INTEGER FUNC, RSV1, RSV2, RSV3, SQLCODE
SQLCODE = 0
GO TO (10,20,5,5,30,40,50),FUNC

5 TYPE *,’*** ADD_SOUNDEX_NOTIFY bad func ***’
GO TO 90

10 TYPE *,’*** ADD_SOUNDEX_NOTIFY activate ***’
CALL ATTACH_DB (SQLCODE)
IF (SQLCODE .NE. 0) GO TO 80
GO TO 90

20 TYPE *,’*** ADD_SOUNDEX_NOTIFY deactivate ***’
CALL DETACH_DB (SQLCODE)
IF (SQLCODE .NE. 0) GO TO 80
GO TO 90

30 TYPE *,’*** ADD_SOUNDEX_NOTIFY start tran ***’
CALL START_TRAN (SQLCODE)
IF (SQLCODE .NE. 0) GO TO 80
GO TO 90

40 TYPE *,’*** ADD_SOUNDEX_NOTIFY commit tran ***’
CALL COMMIT_TRAN (SQLCODE)
IF (SQLCODE .NE. 0) GO TO 80
GO TO 90

50 TYPE *,’*** ADD_SOUNDEX_NOTIFY rollback tran ***’
CALL ROLLBACK_TRAN (SQLCODE)
IF (SQLCODE .NE. 0) GO TO 80
GO TO 90

80 CALL SQL_SIGNAL ()
90 RETURN

END

C A ’substitute’ SOUNDEX routine for demonstration purposes only

6–510 SQL Statements

CREATE ROUTINE Statement

SUBROUTINE MAKE_SOUNDEX_NAME (NAME, SOUNDEX_NAME)
CHARACTER NAME*(*),SOUNDEX_NAME*4
SOUNDEX_NAME(1:1)=NAME(1:1)
IV = ICHAR(NAME(1:1))+22
SOUNDEX_NAME(2:2)=CHAR(MOD(IV,10)+48)
SOUNDEX_NAME(3:3)=CHAR(MOD(IV/10,10)+48)
SOUNDEX_NAME(4:4)=CHAR(IV/100+48)
RETURN
END

Example 7: The ADD_SOUNDEXM.SQLMOD module

-- Support for set soundex routine

MODULE ADD_SOUNDEX
LANGUAGE FORTRAN
PARAMETER COLONS

PROCEDURE ATTACH_DB (SQLCODE);
ATTACH ’FILENAME MF_PERSONNEL’;

PROCEDURE DETACH_DB (SQLCODE);
DISCONNECT DEFAULT;

PROCEDURE START_TRAN (SQLCODE);
SET TRANSACTION READ WRITE;

PROCEDURE COMMIT_TRAN (SQLCODE);
COMMIT;

PROCEDURE ROLLBACK_TRAN (SQLCODE);
ROLLBACK;

PROCEDURE GET_NAME (:ID CHAR(5), :LASTNAME CHAR(14), SQLCODE);
SELECT EMPLOYEE_ID, LAST_NAME INTO :ID, :LASTNAME
FROM EMPLOYEES WHERE EMPLOYEE_ID > :ID LIMIT TO 1 ROW;

PROCEDURE SET_SOUNDEX_NAME (:ID CHAR(5), :SX_NAME CHAR(4), SQLCODE);
UPDATE EMPLOYEES SET SOUNDEX_NAME = :SX_NAME WHERE EMPLOYEE_ID = :ID;

Example 8: Compiling, creating the linker options file, and linking the
FORTRAN and SQL module language programs

$ FORTRAN/NOLIST ADD_SOUNDEX.FOR
$ SQL$MOD ADD_SOUNDEXM.SQLMOD

$ CREATE ADD_SOUNDEX.OPT
SYMBOL_VECTOR = (ADD_SOUNDEX_NAME=PROCEDURE)
SYMBOL_VECTOR = (ADD_SOUNDEX_NOTIFY=PROCEDURE)
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR
PSECT_ATTR=RDB$DBHANDLE,NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR

SQL Statements 6–511

CREATE ROUTINE Statement

$ LINK/SHARE=ADD_SOUNDEX.EXE -
ADD_SOUNDEX.OBJ, ADD_SOUNDEXM.OBJ, SQL$USER:/LIBRARY, -
ADD_SOUNDEX.OPT/OPT
SYMBOL_VECTOR = ADD_SOUNDEX_NAME
SYMBOL_VECTOR = ADD_SOUNDEX_NOTIFY
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR
PSECT_ATTR=RDB$DBHANDLE,NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR

Example 9: Using the routines with interactive SQL

$ SQL
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> --
SQL> DECLARE :ERROR INTEGER;
SQL> --
SQL> SELECT EMPLOYEE_ID,SOUNDEX_NAME FROM EMPLOYEES
cont> LIMIT TO 3 ROWS;
EMPLOYEE_ID SOUNDEX_NAME
00165 NULL
00190 NULL
00187 NULL
3 rows selected
SQL> COMMIT;
SQL> --
SQL> BEGIN
cont> SET :ERROR = CLEAR_SOUNDEX ();
cont> END;
SQL> PRINT :ERROR;

ERROR
0

SQL> --
SQL> SELECT EMPLOYEE_ID,SOUNDEX_NAME FROM EMPLOYEES
cont> LIMIT TO 3 ROWS;
EMPLOYEE_ID SOUNDEX_NAME
00165
00190
00187
3 rows selected
SQL> COMMIT;
SQL> --
SQL> SET TRANSACTION READ ONLY;
SQl> BEGIN
cont> SET :ERROR = 0;
cont> CALL ADD_SOUNDEX_NAME (:ERROR);
cont> END;
*** ADD_SOUNDEX_NOTIFY activate ***
*** ADD_SOUNDEX_NOTIFY start tran ***
SQL> PRINT :ERROR;

ERROR
0

SQL> COMMIT;

6–512 SQL Statements

CREATE ROUTINE Statement

*** ADD_SOUNDEX_NOTIFY commit tran ***
*** ADD_SOUNDEX_NOTIFY deactivate ***
SQL> --
SQL> SELECT EMPLOYEE_ID,SOUNDEX_NAME FROM EMPLOYEES
cont> LIMIT TO 3 ROWS;
EMPLOYEE_ID SOUNDEX_NAME
00165 S501
00190 O101
00187 L890
3 rows selected
SQL> COMMIT;
SQL> --
SQL> BEGIN
cont> SET :ERROR = CLEAR_SOUNDEX ();
cont> END;
SQL> PRINT :ERROR;

ERROR
0

SQL> --
SQL> SET TRANSACTION READ ONLY;
SQL> BEGIN
cont> SET :ERROR = 0;
cont> CALL ADD_SOUNDEX_NAME (:ERROR);
cont> END;
*** ADD_SOUNDEX_NOTIFY activate ***
*** ADD_SOUNDEX_NOTIFY start tran ***
SQL> PRINT :ERROR;

ERROR
0

SQL> ROLLBACK;
*** ADD_SOUNDEX_NOTIFY rollback tran ***
*** ADD_SOUNDEX_NOTIFY deactivate ***
SQL> --
SQL> SELECT EMPLOYEE_ID,SOUNDEX_NAME FROM EMPLOYEES
cont> LIMIT TO 3 ROWS;
EMPLOYEE_ID SOUNDEX_NAME
00165
00190
00187
3 rows selected
SQL> COMMIT;

SQL Statements 6–513

CREATE SCHEMA Statement

CREATE SCHEMA Statement

Creates a new schema in the current default catalog of a multischema
database.

Note

Use of the CREATE SCHEMA statement to create a database is a
deprecated feature. If you specify physical attributes of a database
such as the root file parameters, you receive an informational message,
but SQL creates the database anyway.

SQL> CREATE SCHEMA FILENAME TEST SNAPSHOT IS DISABLED;
%SQL-I-DEPR_FEATURE, Deprecated Feature: SCHEMA (meaning DATABASE)

If you do not specify any physical attributes, you may receive an error
message noting that you must enable multischema naming.

SQL> CREATE SCHEMA PARTS
%SQL-F-SCHCATMULTI, Schemas and catalogs may only be referenced with
multischema enabled

A schema is a group of definitions within a database. The CREATE SCHEMA
statement lets you specify in a single SQL statement all data and privilege
definitions for a new schema. You can also add definitions to the schema later.

A database, in addition to schema definitions, includes database system files
and user data. If you need to specify any physical database characteristics
such as the database root file or storage area parameters, use the CREATE
DATABASE statement. See the CREATE DATABASE Statement for more
information.

You can specify any number of optional schema elements to the CREATE
SCHEMA statement. Schema elements are any of the CREATE statements
(except CREATE STORAGE AREA, CREATE DOMAIN . . . FROM path-name,
and CREATE TABLE . . . FROM path-name) or a GRANT statement.

These statements require statement terminators, except when they are part
of a CREATE SCHEMA or CREATE DATABASE statement. When you use
these statements within a CREATE SCHEMA statement, use a statement
terminator on the last schema element only. The first statement terminator
that SQL encounters ends the CREATE SCHEMA statement. Later CREATE
or GRANT statements are not within the scope of the CREATE SCHEMA
statement.

6–514 SQL Statements

CREATE SCHEMA Statement

Environment

You can use the CREATE SCHEMA statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE SCHEMA <schema-name>
AUTHORIZATION <auth-id>
<schema-name> AUTHORIZATION <auth-id>

schema-element

schema-name =

<catalog-name> .
" <alias>.<catalog-name> "

<name-of-schema>
" <alias>.<name-of-schema> "

schema-element =

create-collating-sequence-statement
create-domain-statement
create-index-statement
create-sequence-statement
create-storage-map-statement
create-table-statement
create-trigger-statement
create-view-statement
grant-statement

SQL Statements 6–515

CREATE SCHEMA Statement

Arguments

AUTHORIZATION auth-id
If you do not specify a schema name, the authorization identifier specifies the
default schema.

If you want to comply with the ANSI/ISO 1989 standard, specify the
AUTHORIZATION clause without the schema name. Specify both the
AUTHORIZATION clause and the schema name to comply with the current
ANSI/ISO SQL standard.

create-collating-sequence-statement
See the CREATE COLLATING SEQUENCE Statement for details.

If you want to specify a collating sequence in a CREATE DOMAIN statement
embedded in a CREATE SCHEMA statement, you must first specify a CREATE
COLLATING SEQUENCE statement within the same CREATE SCHEMA
statement.

create-domain-statement
See the CREATE DOMAIN Statement for details.

You cannot use the FROM path-name clause when embedding a CREATE
DOMAIN statement in a CREATE SCHEMA statement. You can, however,
issue a separate CREATE DOMAIN statement following the CREATE
SCHEMA statement. You can also describe the domain directly within the
CREATE SCHEMA statement.

If you want to specify a collating sequence in your embedded CREATE
DOMAIN statement, you must first specify a CREATE COLLATING
SEQUENCE statement within the same CREATE SCHEMA statement.

create-function-statement
See the CREATE ROUTINE Statement for details.

create-index-statement
See the CREATE INDEX Statement for details.

create-module-statement
See the CREATE MODULE Statement for details.

create-procedure-statement
See the CREATE ROUTINE Statement for details.

create-sequence-statement
See the CREATE SEQUENCE Statement for details.

6–516 SQL Statements

CREATE SCHEMA Statement

create-storage-map-statement
See the CREATE STORAGE MAP Statement for details.

create-table-statement
See the CREATE TABLE Statement for details.

You cannot use the FROM path-name clause when embedding a CREATE
TABLE statement in a CREATE SCHEMA statement. You can, however,
issue a separate CREATE TABLE statement following the CREATE SCHEMA
statement. You can also describe the table directly within the CREATE
SCHEMA statement.

The CREATE TABLE statements in a CREATE SCHEMA statement can refer
to domains not yet created, provided that CREATE DOMAIN statements for
the domains are in the same CREATE SCHEMA statement.

create-trigger-statement
See the CREATE TRIGGER Statement for details.

create-view-statement
See the CREATE VIEW Statement for details.

grant-statement
See the GRANT Statement for details.

schema-element
Some CREATE statements or a GRANT statement. See the syntax diagram in
this section for the complete list of allowable CREATE statements.

schema-name
Specifies the name of the schema created by the CREATE SCHEMA statement.

You can qualify the schema name with either a catalog name or the catalog
name qualified by the alias. You must enclose the alias and catalog name in
double quotation marks and separate them with a period. You must issue the
SET QUOTING RULES statement before you specify the alias and catalog
name pair, or SQL issues an error message about the use of double quotation
marks.

For information on qualifying schema names with aliases and catalog names,
see Section 2.2.15.

SQL Statements 6–517

CREATE SCHEMA Statement

Usage Notes

• If the CREATE SCHEMA statement is a subordinate clause within a
CREATE DATABASE statement, the alias and catalog names must be the
same as the alias and catalog names for the last schema created, or must
be the default alias and catalog name.

Example

Example 1: Creating a schema within a multischema database

The following interactive statements create a database that contains a schema
within a catalog. You issue the CREATE SCHEMA statement alone or as part
of a CREATE DATABASE statement.

SQL> SET DIALECT ’SQL99’;
SQL> CREATE DATABASE ALIAS PERS_ALIAS FILENAME personnel MULTISCHEMA IS ON;
SQL> CREATE CATALOG "PERS_ALIAS.ADMIN";
SQL> CREATE SCHEMA "PERS_ALIAS.ADMIN".PAYROLL;
SQL> SHOW SCHEMAS;
Schemas in database PERS_ALIAS

"PERS_ALIAS.ADMIN".PAYROLL
"PERS_ALIAS.RDB$CATALOG".RDB$SCHEMA

Example 2: Using a single statement to create a catalog, schema, domain,
sequence and table for an existing multischema database.

SQL> create catalog NEW_CATALOG
cont> create schema NEW_SCHEMA
cont> create sequence MYSEQ
cont> create table MYTABLE (a int identity)
cont> create domain MONEY as integer(2)
cont> ;
SQL> show tables
User tables in database with filename abc

NEW_CATALOG.NEW_SCHEMA.MYTABLE
SQL> show sequences
Sequences in database with filename abc

NEW_CATALOG.NEW_SCHEMA.MYSEQ

6–518 SQL Statements

CREATE SCHEMA Statement

Sequence Id: 2
Initial Value: 1
Minimum Value: 1
Maximum Value: 9223372036854775806
Next Sequence Value: 1
Increment by: 1
Cache Size: 20
No Order
No Cycle
No Randomize
Wait

NEW_CATALOG.NEW_SCHEMA.MYTABLE

Sequence Id: 1
An identity column sequence.
Initial Value: 1
Minimum Value: 1
Maximum Value: (none)
Next Sequence Value: 1
Increment by: 1
Cache Size: 20
No Order
No Cycle
No Randomize
Wait
Comment: column IDENTITY sequence

SQL Statements 6–519

Index

A
ABS

See After-image journal (.aij) file
Account

locking, 6–229
unlocking, 6–229

ACL-style protection clause
differences from ANSI/ISO-style, 6–366

ADD CACHE clause, 6–308
of ALTER DATABASE statement, 6–24

Adding
columns to tables, 6–186

ADD JOURNAL clause
of ALTER DATABASE statement, 6–24

ADD STORAGE AREA clause
See also CREATE STORAGE AREA clause
of ALTER DATABASE statement, 6–24

ADJUSTABLE LOCK GRANULARITY clause
of ALTER DATABASE statement, 6–25
of CREATE DATABASE statement, 6–337

After-image journal (.aij) file, 6–40, 6–42
allocating blocks, 6–26
backup file, 6–30, 6–57
backup server (ABS), 6–31
EXTENT clause, 6–38
fast commit processing, 6–39
log server, 6–44
unsuppressing the journal, 6–42

After-image journal (.aij) files
disabling logging, 6–169

for ALTER STORAGE MAP statement,
6–174

AIJ log server
See ALS

ALERT OPERATOR clause
of NOTIFY clause

of ALTER DATABASE statement, 6–25
options, 6–25

Alias
for default database, 6–241
in ATTACH statement, 6–240
in CONNECT statement, 6–299
in CREATE DATABASE statement, 6–337
in CREATE DOMAIN statement, 6–398
RDB$DBHANDLE, 6–240, 6–241, 6–299,

6–338
ALIAS clause

of CREATE DATABASE statement, 6–337
ALL AREAS clause

of MULTITHREAD AREA ADDITIONS clause
of CREATE DATABASE statement,

6–338
ALLOCATION clause

alter storage area parameter
of ALTER DATABASE statement, 6–27

of ALTER STORAGE AREA clause, 6–27
of CREATE CACHE clause, 6–309
storage area parameter

of CREATE DATABASE statement,
6–339

ALLOCATION IS clause
of JOURNAL clause

of ALTER DATABASE statement, 6–26
ALS

specifying with ALTER DATABASE statement,
6–44

Index–1

ALTER CACHE clause
of ALTER DATABASE statement, 6–27

ALTER clause
of ALTER TABLE statement, 6–193

ALTER CONSTRAINT statement, 6–8
COMMENT IS clause, 6–8
RENAME TO clause, 6–9

ALTER DATABASE statement, 6–12
ADD CACHE clause, 6–24
ADD JOURNAL clause, 6–24
ADD STORAGE AREA clause, 6–24
ADJUSTABLE LOCK GRANULARITY clause,

6–25
ALERT OPERATOR clause

of NOTIFY clause, 6–25
ALLOCATION clause

alter storage area parameter, 6–27
ALLOCATION IS clause

of JOURNAL clause, 6–26
ALTER CACHE clause, 6–27
altering storage area parameters, 6–27
ALTER JOURNAL clause, 6–27
ALTER STORAGE AREA clause, 6–28
ALTER TRANSACTION MODES clause,

6–29
ASYNC BATCH WRITES clause, 6–29
ASYNC PREFETCH clause, 6–29
BACKUP FILENAME clause

of JOURNAL clause, 6–30
BACKUP SERVER clause

of JOURNAL clause, 6–31
BUFFER SIZE clause, 6–31
CACHE USING clause

alter storage area parameter, 6–32
CARDINALITY COLLECTION clause, 6–32
CARRY OVER LOCKS clause, 6–32
CHECKPOINT ALL ROWS TO BACKING

FILE clause, 6–34
CHECKPOINT INTERVAL clause

of FAST COMMIT clause, 6–33
CHECKPOINT TIMED clause

of FAST COMMIT clause, 6–34
CHECKPOINT UPDATED ROWS TO

BACKING FILE clause, 6–34

ALTER DATABASE statement (cont’d)
CHECKPOINT UPDATED ROWS TO

DATABASE clause, 6–34
CHECKSUM CALCULATION clause

alter storage area parameter, 6–35
CLEAN BUFFER COUNT clause

of ASYNC BATCH WRITES clause, 6–36
COMMIT TO JOURNAL OPTIMIZATION

clause
of FAST COMMIT clause, 6–36

COUNT IS clause
of ADJUSTABLE LOCK GRANULARITY

clause, 6–36
DEPTH clause

of ASYNC PREFETCH clause, 6–36
of DETECTED ASYNC PREFETCH

clause, 6–36
DETECTED ASYNC PREFETCH clause,

6–37
DICTIONARY clause, 6–37
DROP CACHE clause, 6–38
DROP JOURNAL clause, 6–38
DROP STORAGE AREA clause, 6–38
EXTENT clause

alter storage area parameter, 6–38
of JOURNAL clause, 6–38

FAST COMMIT clause
of JOURNAL clause, 6–39

FILENAME clause, 6–40
of ADD JOURNAL clause, 6–40

GALAXY SUPPORT clause, 6–40
GLOBAL BUFFERS clause, 6–41
INCREMENTAL BACKUP SCAN

OPTIMIZATION clause, 6–41
JOURNAL clause, 6–42
JOURNAL IS UNSUPPRESSED clause

of ALTER JOURNAL clause, 6–42
LARGE MEMORY clause

of ADD CACHE clause, 6–353
of ALTER CACHE clause, 6–353

LOCATION clause
of ADD CACHE clause, 6–43
of ALTER CACHE clause, 6–43

LOCKING clause
alter storage area parameter, 6–44

Index–2

ALTER DATABASE statement (cont’d)
LOCK PARTITIONING clause, 6–43
LOCK TIMEOUT INTERVAL clause, 6–43
LOGMINER SUPPORT clause, 6–45
LOG SERVER clause

of JOURNAL clause, 6–44
MAXIMUM BUFFER COUNT clause

of ASYNC BATCH WRITES clause, 6–45
METADATA CHANGES clause, 6–46
MULTISCHEMA clause, 6–46
NO BACKUP FILENAME clause

of JOURNAL clause, 6–47
NO COMMIT TO JOURNAL OPTIMIZATION

clause
of FAST COMMIT clause, 6–36

NO LOCATION clause
of ROW CACHE clause, 6–47

NO ROW CACHE clause
alter storage area parameter, 6–47

NO SWEEP INTERVAL clause
of ROW CACHE clause, 6–47

NOTIFY clause
of JOURNAL clause, 6–47

NUMBER IS clause
of GLOBAL BUFFERS clause, 6–48

NUMBER OF BUFFERS clause, 6–48
NUMBER OF CLUSTER NODES clause,

6–48
NUMBER OF RECOVERY BUFFERS clause,

6–49
NUMBER OF SWEEP ROWS clause

of ADD CACHE clause, 6–49, 6–362
of ALTER CACHE clause, 6–49, 6–362

NUMBER OF USERS clause, 6–50
OPEN clause, 6–50
OVERWRITE clause

of JOURNAL clause, 6–50
PAGE TRANSFER clause

of GLOBAL BUFFERS clause, 6–51
PATHNAME clause, 6–40
PRESTARTED TRANSACTIONS ARE

DISABLED clause, 6–52
PRESTARTED TRANSACTIONS clause,

6–51
READ ONLY clause

ALTER DATABASE statement
READ ONLY clause (cont’d)

alter storage area parameter, 6–52
READ WRITE clause, 6–28

alter storage area parameter, 6–52
RECOVERY JOURNAL (BUFFER MEMORY

IS GLOBAL) clause, 6–54
RECOVERY JOURNAL (BUFFER MEMORY

IS LOCAL) clause, 6–54
RECOVERY JOURNAL (LOCATION IS)

clause, 6–54
RECOVERY JOURNAL (NO LOCATION)

clause, 6–55
RECOVERY JOURNAL clause, 6–54
RESERVE CACHE SLOTS clause, 6–55
RESERVE JOURNALS clause, 6–55
RESERVE SEQUENCES clause, 6–55
RESERVE STORAGE AREAS clause, 6–56
reserving slots for sequences, 6–55
restriction, 6–74, 6–75
ROW CACHE clause, 6–56
SAME BACKUP FILENAME AS JOURNAL

clause
of ADD JOURNAL clause, 6–57

SECURITY CHECKING clause, 6–57
SET TRANSACTION MODES clause, 6–59
SHARED MEMORY clause, 6–59
SHARED MEMORY IS PROCESS RESIDENT

clause, 6–372
SHUTDOWN TIME clause

of JOURNAL clause, 6–60
SNAPSHOT ALLOCATION clause

alter storage area parameter, 6–60
SNAPSHOT DISABLED clause, 6–61
SNAPSHOT ENABLED clause, 6–61
SNAPSHOT EXTENT clause

alter storage area parameter, 6–60
specifying file for checkpointed rows, 6–34
STATISTICS COLLECTION clause, 6–61
SWEEP INTERVAL clause

of ROW CACHE clause, 6–62, 6–375
SYNONYMS ARE ENABLED clause, 6–62
THRESHOLD IS clause

of DETECTED ASYNC PREFETCH
clause, 6–62

TRANSACTION INTERVAL clause

Index–3

ALTER DATABASE statement
TRANSACTION INTERVAL clause (cont’d)

of FAST COMMIT clause, 6–62
USER clause, 6–64
USER LIMIT clause

of GLOBAL BUFFERS clause, 6–63
USING clause

of USER clause, 6–64
WAIT clause

of OPEN clause, 6–64
WORKLOAD COLLECTION clause, 6–64

ALTER DOMAIN statement, 6–88
See also CREATE DOMAIN statement
See also DROP DOMAIN statement in Volume

3
COLLATING SEQUENCE clause, 6–91,

6–100
COMMENT IS clause, 6–91
conversion error, 6–95
domain constraint clause, 6–92
formatting clauses, 6–93
NO COLLATING SEQUENCE clause, 6–93
RENAME TO clause, 6–93
restriction, 6–95
sql-and-dtr-clause, 6–93

ALTER FUNCTION statement, 6–104
COMMENT IS clause, 6–106
COMPILE clause, 6–106
DETERMINISTIC clause, 6–107
RENAME TO clause, 6–108
RETURNS NULL clause, 6–108
VARIANT clause, 6–109

ALTER INDEX statement, 6–111
ADD PARTITION clause, 6–114
BUILD PARTITION clause, 6–126
COMMENT IS clause, 6–115
DROP PARTITION clause, 6–115
DUPLICATES ARE ALLOWED clause, 6–115
IN area-name clause, 6–115
LOGGING clause, 6–115
MAINTENANCE IS DISABLED clause,

6–116
MAINTENANCE IS ENABLED clause, 6–116
MAINTENANCE IS ENABLED DEFERRED

clause, 6–116

ALTER INDEX statement (cont’d)
MAINTENANCE IS ENABLED IMMEDIATE

clause, 6–116
MOVE PARTITION clause, 6–116
NODE SIZE clause, 6–117
NOLOGGING clause, 6–115
PARTITION clause, 6–117
PERCENT FILL clause, 6–117
PREFIX CARDINALITY COLLECTION IS

DISABLED clause, 6–117
PREFIX CARDINALITY COLLECTION IS

ENABLED clause, 6–117
PREFIX CARDINALITY COLLECTION IS

ENABLED FULL clause, 6–118
REBUILD PARTITION clause, 6–126
RENAME PARTITION clause, 6–118
STORE clause, 6–115
threshold clause, 6–118
TRUNCATE PARTITION clause, 6–126
USAGE UPDATE clause, 6–119
USING clause, 6–119
WITH LIMIT OF clause, 6–119

Altering
See Modifying
views, 6–232

Altering storage area parameters
of ALTER DATABASE statement, 6–27

ALTER JOURNAL clause
of ALTER DATABASE statement, 6–27

ALTER MODULE statement, 6–134
ADD clause, 6–134
COMMENT IS clause, 6–135
COMPILE clause, 6–135
DROP clause, 6–135
END MODULE clause, 6–135
RENAME TO clause, 6–135

ALTER OUTLINE statement, 6–141
COMMENT IS clause, 6–141
RENAME TO clause, 6–142

ALTER PROCEDURE statement, 6–147
COMMENT IS clause, 6–149
COMPILE clause, 6–149
RENAME TO clause, 6–151

Index–4

ALTER PROFILE statement
COMMENT IS clause, 6–154

ALTER ROLE statement, 6–157
COMMENT IS clause, 6–157
IDENTIFIED EXTERNALLY clause, 6–157
NOT IDENTIFIED clause, 6–157
RENAME TO clause, 6–158

ALTER SEQUENCE statement, 6–160
CACHE clause, 6–161
COMMENT IS clause, 6–162
CYCLE clause, 6–162
DEFAULT WAIT clause, 6–165
INCREMENT BY clause, 6–162
MAXVALUE clause, 6–162
MINVALUE clause, 6–163
NOCACHE clause, 6–161
NOCYCLE clause, 6–162
NOMAXVALUE clause, 6–162
NOMINVALUE clause, 6–163
NOORDER clause, 6–164
NORANDOMIZE clause, 6–164
NOWAIT clause, 6–165
ORDER clause, 6–164
RANDOMIZE clause, 6–164
RENAME TO clause, 6–164
RESTART WITH clause, 6–165
WAIT clause, 6–165

ALTER statement
general usage notes, 6–7

ALTER STORAGE AREA clause
ALLOCATION clause, 6–27
CACHE USING clause, 6–32
CHECKSUM CALCULATION clause, 6–35
EXTENT clause, 6–38
LOCKING clause, 6–44
NO ROW CACHE clause, 6–47
of ALTER DATABASE statement, 6–28
READ ONLY clause, 6–52
READ WRITE clause, 6–52
SNAPSHOT ALLOCATION clause, 6–60
SNAPSHOT EXTENT clause, 6–60

ALTER STORAGE MAP statement, 6–169
COMMENT IS clause, 6–172
COMPILE clause, 6–172
COMPRESSION clause, 6–173

ALTER STORAGE MAP statement (cont’d)
disabling logging to .aij file, 6–169
LOGGING clause, 6–174
NOLOGGING clause, 6–174
NO PLACEMENT VIA INDEX clause, 6–174
PARTITIONING IS UPDATABLE clause,

6–174
PARTITION name clause, 6–174
PLACEMENT VIA INDEX clause, 6–174
RENAME PARTITION clause, 6–175
REORGANIZE clause, 6–175
STORAGE MAP clause, 6–175
STORE LISTS clause, 6–175
THRESHOLDS clause, 6–176

ALTER SYNONYM statement, 6–184
ALTER TABLE statement, 6–186

AFTER COLUMN clause, 6–192
ALTER clause, 6–193
AUTOMATIC clause, 6–193
AUTOMATIC INSERT clause, 6–193
AUTOMATIC UPDATE clause, 6–193
BEFORE COLUMN clause, 6–192
constraint-attributes clause, 6–194
DEFERRABLE clause, 6–194
disable clause, 6–199
DROP CONSTRAINT clause, 6–199
enable clause, 6–199
IDENTITY clause, 6–201
INITIALLY DEFERRED clause, 6–194
modifying tables, 6–186
NOT DEFERRABLE clause, 6–194
NULL column constraint, 6–201
REFERENCES clause, 6–202
RENAME TO clause, 6–202
specifying domains for data types, 6–393

ALTER TRANSACTION MODES clause
CREATE DATABASE statement, 6–339
of ALTER DATABASE statement, 6–29
transaction modes, 6–63, 6–377

ALTER TRIGGER statement, 6–226
COMMENT IS clause, 6–226, 6–227
DISABLE clause, 6–226
ENABLE clause, 6–226
RENAME TO clause, 6–226

Index–5

ALTER USER statement, 6–229
ACCOUNT LOCK clause, 6–229
ACCOUNT UNLOCK clause, 6–229
COMMENT IS clause, 6–230
IDENTIFIED EXTERNALLY clause, 6–230
PROFILE clause, 6–230
PUBLIC clause, 6–230
RENAME TO clause, 6–230

ALTER VIEW statement, 6–232
rules for modifying views, 6–233

ANSI/ISO-style protection clause
differences from ACL-style, 6–366

AREAS keyword
of REORGANIZE clause, 6–172

AS clause
of CONNECT statement, 6–299

Assigning row caches, 6–340
ASYNC BATCH WRITES clause

of ALTER DATABASE statement, 6–29
of CREATE DATABASE statement, 6–339

Asynchronous batch-write, 6–29, 6–339
Asynchronous prefetch, 6–29, 6–339
ASYNC PREFETCH clause

of ALTER DATABASE statement, 6–29
of CREATE DATABASE statement, 6–339

ATOMIC keyword
in compound statement, 6–283

Attaching to a database
multiple attachments to same database,

6–246
with ATTACH statement, 6–238 to 6–248

Attach specifications
in ATTACH statement, 6–243
in CONNECT statement, 6–300

ATTACH statement
attach specifications, 6–243
database option, 6–242
DBKEY SCOPE clause, 6–242
default alias, 6–240
FILENAME clause, 6–243
MULTISCHEMA IS ON clause, 6–244
PATHNAME clause, 6–244
PRESTARTED TRANSACTIONS clause,

6–244
repository path names, 6–244

ATTACH statement (cont’d)
RESTRICTED ACCESS clause, 6–245
ROWID SCOPE clause, 6–245

Authentication
external, 6–230
user, 6–43, 6–243, 6–301, 6–302, 6–354

Auth-id
See Authorization identifier

AUTHORIZATION clause
of CREATE SCHEMA statement, 6–516

Authorization identifier
in CREATE SCHEMA statement, 6–516

AUTOMATIC clause, 6–193

B
Backup

incremental, 6–41, 6–351
BACKUP FILENAME clause

of JOURNAL clause
of ALTER DATABASE statement, 6–30

options, 6–30
BACKUP SERVER clause

of JOURNAL clause
of ALTER DATABASE statement, 6–31

BEGIN DECLARE statement, 6–249, 6–250
required terminators, 6–249

BEGIN keyword
in compound statement, 6–284

Beginning label
in compound statement, 6–284

Block
compound statements, 6–284

B-tree index
See Sorted index

Buffer
for asynchronous batch writes, 6–36, 6–45,

6–343, 6–356
for asynchronous prefetch, 6–36, 6–348
for detected asynchronous prefetch, 6–36,

6–348
BUFFER SIZE clause

of ALTER DATABASE statement, 6–31
of CREATE DATABASE statement, 6–340

Index–6

C
Cached rows

specifying a checkpoint interval, 6–341
CACHE SIZE clause

of CREATE CACHE clause, 6–310
CACHE USING clause

alter storage area parameter
of ALTER DATABASE statement, 6–32

of ALTER STORAGE AREA clause, 6–32
storage area parameter

of CREATE DATABASE statement,
6–340

CALL statement
compound, 6–255
simple, 6–252

CARDINALITY COLLECTION clause
of ALTER DATABASE statement, 6–32
of CREATE DATABASE statement, 6–341

Carry-over lock optimization, 6–32, 6–341
CARRY OVER LOCKS clause

of ALTER DATABASE statement, 6–32
of CREATE DATABASE statement, 6–341

CASE (searched) control statement, 6–259
ELSE compound-use-statement, 6–259
THEN compound-use-statement, 6–259
WHEN predicate, 6–260

CASE (simple) control statement
ELSE clause, 6–262
of compound statement, 6–261
THEN clause, 6–262
WHEN clause, 6–262

Catalog
adding comments on, 6–266
CREATE CATALOG statement, 6–319
creating, 6–319

CATALOG clause
of CONNECT statement, 6–300

Character data type
in CREATE DOMAIN statement, 6–397

Character set
creating databases with, 6–328
database

default, 6–329, 6–347

Character set
database (cont’d)

identifier, 6–329
national, 6–329

for database, 6–351, 6–358
using

CREATE DOMAIN statement with,
6–393

multiple with CREATE DATABASE
statement, 6–328

CHECKPOINT
of CREATE CACHE clause, 6–310

Checkpoint interval, 6–39
specifying for cached rows, 6–341

CHECKPOINT INTERVAL clause
of FAST COMMIT clause

of ALTER DATABASE statement, 6–33
Checkpoint record, 6–33
CHECKPOINT TIMED clause

of FAST COMMIT clause
of ALTER DATABASE statement, 6–34

of ROW CACHE clause
of CREATE DATABASE statement,

6–341
CHECKSUM CALCULATION clause

alter storage area parameter
of ALTER DATABASE statement, 6–35

of ALTER STORAGE AREA clause, 6–35
storage area parameter

of CREATE DATABASE statement,
6–342

CLEAN BUFFER COUNT clause
of ASYNC BATCH WRITES clause

of ALTER DATABASE statement, 6–36
of CREATE DATABASE statement,

6–343
CLOSE statement, 6–264
Closing a cursor, 6–264
Collating sequence

See also COLLATING SEQUENCE clause,
CREATE COLLATING SEQUENCE
statement, DROP COLLATING
SEQUENCE statement, NO COLLATING
SEQUENCE clause

ALTER DOMAIN statement, 6–100

Index–7

Collating sequence (cont’d)
altering, 6–88
CREATE COLLATING SEQUENCE statement

in CREATE DATABASE statement,
6–344

restriction, 6–325, 6–380
creating, 6–323
in CREATE SCHEMA statement, 6–516
on index fields, 6–423
restriction, 6–326

COLLATING SEQUENCE clause
of ALTER DOMAIN statement, 6–91
of CREATE DATABASE statement, 6–343
of CREATE DOMAIN statement, 6–397

Column
adding comments on, 6–266
adding to tables, 6–186
automatic, 6–193
default value, 6–199
defining, 6–186
deleting from tables, 6–186
display order, 6–192
modifying in tables, 6–186

Column constraints
CHECK, 6–194
NOT NULL, 6–201
NULL, 6–201
PRIMARY KEY, 6–201
UNIQUE, 6–203

Column default value, 6–197, 6–206, 6–215
COMMENT clause

of COLLATING SEQUENCE clause
of CREATE DATABASE statement,

6–344
COMMENT ON statement, 6–266

in CREATE DATABASE statement
restriction, 6–382

Comments
adding to catalogs, 6–266
adding to columns, 6–266
adding to constraints, 6–266
adding to databases, 6–266
adding to domains, 6–266
adding to indexes, 6–266
adding to index storage map definition, 6–115

Comments (cont’d)
adding to outlines, 6–266, 6–460
adding to profiles, 6–266
adding to roles, 6–489
adding to schemas, 6–266
adding to synonyms, 6–266
adding to tables, 6–266
multiple, 6–269
specifying for a user definition, 6–230

COMMIT statement
writing changes to a database, 6–274 to

6–279
COMMIT TO JOURNAL OPTIMIZATION clause

of FAST COMMIT clause
of ALTER DATABASE statement, 6–36

Compound statements, 6–280, 6–291
assigning a name to, 6–286
beginning label in, 6–284
block, 6–284
CASE (searched) control statement, 6–259
CASE (simple) control statement, 6–261
for-counted-loop clause, 6–285
lock-table-statement clause, 6–286
naming query outline for, 6–286
OPTIMIZE AS clause, 6–286
OPTIMIZE USING clause, 6–286
OPTIMIZE WITH clause, 6–287
PRAGMA clause, 6–287
restriction, 6–284, 6–289
searched-case-statement clause, 6–284
simple-case-statement clause, 6–287
while-statement clause, 6–288
WITH HOLD clause, 6–288

Compound-use statement
in compound statement, 6–280

Compressing
integer column values for indexes, 6–414
key suffixes for indexes, 6–407, 6–416

COMPRESSION clause
of ALTER STORAGE MAP statement, 6–173

Configuration file
authentication information, 6–243

Configuration parameter
SQL_PASSWORD, 6–243
SQL_USERNAME, 6–243

Index–8

Connecting to a database
with ATTACH statement, 6–238 to 6–248

Connection, 6–295
Connection name, 6–295
CONNECT statement, 6–295

AS clause, 6–299
attach specifications, 6–300
CATALOG clause, 6–300
default alias, 6–299
FILENAME clause, 6–300
NAMES clause, 6–301
PATHNAME clause, 6–301
repository path names, 6–301
SCHEMA clause, 6–301
TO clause, 6–302

Constraint
adding to tables, 6–186
DEFERRABLE clause, 6–194
deleting from tables, 6–186
domain

adding, 6–92
altering, 6–92
creating, 6–398

naming in
ALTER VIEW statement, 6–233

NOT DEFERRABLE clause, 6–194
Constraint attributes

DEFERRABLE, 6–195
DEFERRABLE INITIALLY DEFERRED,

6–195
DEFERRABLE INITIALLY IMMEDIATE,

6–195
INITIALLY DEFERRED, 6–195
INITIALLY IMMEDIATE, 6–195
INITIALLY IMMEDIATE DEFERRABLE,

6–195
NOT DEFERRABLE, 6–195
NOT DEFERRABLE INITIALLY

IMMEDIATE, 6–195
Constraints

disabling, 6–199
disabling validation of, 6–200
specifying evaluation time, 6–194

Control statements
CASE (searched), 6–259
CASE (simple), 6–261
in compound statement, 6–280

Conversion
errors converting

domains, 6–95
COUNT IS clause

of ADJUSTABLE LOCK GRANULARITY
clause
of ALTER DATABASE statement, 6–36
of CREATE DATABASE statement,

6–344
CREATE CACHE clause, 6–308

ALLOCATION clause, 6–309
CACHE SIZE clause, 6–310
CHECKPOINT clause, 6–310
EXTENT clause, 6–310
LOCATION clause, 6–311
NO LOCATION clause, 6–311
NUMBER OF RESERVED ROWS clause,

6–311
NUMBER OF SWEEP ROWS clause, 6–311
of CREATE DATABASE statement, 6–308,

6–344
ROW LENGTH clause, 6–312
ROW REPLACEMENT clause, 6–312
ROW SNAPSHOT clause, 6–312
SHARED MEMORY clause, 6–312

CREATE CACHE statement
SHARED MEMORY IS PROCESS RESIDENT

clause, 6–313
CREATE CATALOG statement, 6–319, 6–320

of CREATE DATABASE statement, 6–344
CREATE COLLATING SEQUENCE statement,

6–323, 6–326
in CREATE DATABASE statement

restriction, 6–325
in CREATE SCHEMA statement, 6–516
of CREATE DATABASE statement, 6–344
STORED NAME IS clause, 6–324

CREATE DATABASE clause
SNAPSHOT ALLOCATION clause, 6–372

Index–9

CREATE DATABASE statement, 6–328
ADJUSTABLE LOCK GRANULARITY clause,

6–337
ALIAS clause, 6–337
ALL AREAS clause

of MULTITHREAD AREA ADDITIONS
clause, 6–338

ALLOCATION clause
storage area parameter, 6–339

ALTER TRANSACTION MODES clause,
6–339

ASYNC BATCH WRITES clause, 6–339
ASYNC PREFETCH clause, 6–339
BUFFER SIZE clause, 6–340
CACHE USING clause

storage area parameter, 6–340
CARDINALITY COLLECTION clause, 6–341
CARRY OVER LOCKS clause, 6–341
CHECKPOINT ALL ROWS TO BACKING

FILE clause, 6–342
CHECKPOINT TIMED clause

of ROW CACHE clause, 6–341
CHECKPOINT TIMED EVERY n SECONDS

clause, 6–341
CHECKPOINT UPDATED ROWS TO

BACKING FILE clause, 6–342
CHECKPOINT UPDATED ROWS TO

DATABASE clause, 6–342
CHECKSUM CALCULATION clause

storage area parameter, 6–342
CLEAN BUFFER COUNT clause

of ASYNC BATCH WRITES clause,
6–343

COLLATING SEQUENCE clause, 6–343
collating sequence restriction, 6–380
COMMENT clause

of COLLATING SEQUENCE clause,
6–344

COUNT IS clause
of ADJUSTABLE LOCK GRANULARITY

clause, 6–344
CREATE CACHE clause, 6–308, 6–344
CREATE CATALOG statement, 6–344
CREATE COLLATING SEQUENCE

statement, 6–344

CREATE DATABASE statement (cont’d)
CREATE DOMAIN statement, 6–345
CREATE FUNCTION statement, 6–345
CREATE INDEX statement, 6–345
CREATE MODULE statement, 6–345
CREATE PROCEDRUE statement, 6–345
CREATE SCHEMA statement, 6–345
CREATE SEQUENCE statement, 6–345
CREATE STORAGE AREA clause, 6–345
CREATE STORAGE MAP statement, 6–345
CREATE TABLE statement, 6–346
CREATE TRIGGER statement, 6–346
CREATE VIEW statement, 6–346
DBKEY SCOPE clause, 6–346
default alias, 6–338
default character set, 6–347
DEFAULT STORAGE AREA clause, 6–347
DEPTH clause

of ASYNC PREFETCH clause, 6–348
of DETECTED ASYNC PREFETCH

clause, 6–348
DETECTED ASYNC PREFETCH clause,

6–348
DICTIONARY clause, 6–348
environment, 6–329
EXTENT clause

storage area parameter, 6–349
FILENAME clause, 6–349
GALAXY SUPPORT clause, 6–350
GLOBAL BUFFERS clause, 6–351
GRANT statement, 6–351
identifier character set, 6–351
including COMMENT ON statement

restriction, 6–382
INCREMENTAL BACKUP SCAN

OPTIMIZATION clause, 6–351
in dynamic SQL, 6–329
in embedded SQL, 6–329
in interactive SQL, 6–329
INTERVAL clause

storage area parameter, 6–352
LIMIT TO AREAS clause

of MULTITHREAD AREA ADDITIONS
clause, 6–353

LIST STORAGE AREA clause, 6–353
LOCATION IS clause

Index–10

CREATE DATABASE statement
LOCATION IS clause (cont’d)

of ROW CACHE clause, 6–354
LOCKING clause

storage area parameter, 6–355
LOCK PARTITIONING clause, 6–354
LOCK TIMEOUT INTERVAL clause, 6–355
LOGMINER SUPPORT clause, 6–356
MAXIMUM BUFFER COUNT clause

of ASYNC BATCH WRITES clause,
6–356

METADATA CHANGES clause, 6–357
MULTISCHEMA clause, 6–357
MULTITHREAD AREA ADDITIONS clause,

6–358
national character set, 6–358
NCS options

of COLLATING SEQUENCE clause,
6–358

NO LOCATION clause
of ROW CACHE clause, 6–359

NO ROW CACHE clause
storage area parameter, 6–359

NOTIFY clause
of JOURNAL clause, 6–359

NUMBER IS clause
of GLOBAL BUFFERS clause, 6–360,

6–364, 6–376
NUMBER OF BUFFERS clause, 6–360
NUMBER OF CLUSTER NODES clause,

6–361
NUMBER OF RECOVERY BUFFERS clause,

6–361
NUMBER OF USERS clause, 6–362
OPEN clause, 6–362
PAGE FORMAT clause

storage area parameter, 6–363
PAGE SIZE clause

storage area parameter, 6–363
PATHNAME clause, 6–364
PRESTARTED TRANSACTIONS clause,

6–365
PROTECTION clause, 6–366
RECOVERY JOURNAL (BUFFER MEMORY

IS GLOBAL) clause, 6–366

CREATE DATABASE statement (cont’d)
RECOVERY JOURNAL (BUFFER MEMORY

IS LOCAL) clause, 6–366
RECOVERY JOURNAL clause, 6–367
repository path names, 6–364
RESERVE CACHE SLOTS clause, 6–367
RESERVE JOURNALS clause, 6–367
RESERVE n SEQUENCES clause, 6–368
RESERVE STORAGE AREAS clause, 6–368
reserving slots for sequences, 6–368
RESTRICTED ACCESS clause, 6–369
restriction, 6–380
root file parameters, 6–369
ROW CACHE clause, 6–369
ROWID SCOPE clause, 6–370
schemas, 6–328
SECURITY CHECKING clause, 6–370
SEGMENTED STRING clause, 6–371
SET TRANSACTION MODES clause, 6–371
SHARED MEMORY clause, 6–372
SNAPSHOT ALLOCATION clause

alter storage area parameter, 6–372
SNAPSHOT CHECKSUM ALLOCATION

clause, 6–372
SNAPSHOT DISABLED clause, 6–373
SNAPSHOT ENABLED clause, 6–372, 6–374
SNAPSHOT EXTENT clause

storage area parameter, 6–373
SNAPSHOT FILENAME clause

storage area parameter, 6–373
specifying a checkpoint interval, 6–341
specifying file for checkpointed rows, 6–342
STATISTICS COLLECTION clause, 6–374
storage area parameters, 6–374
SYSTEM INDEX parameter, 6–375
SYSTEM INDEX PREFIX CARDINALITY

COLLECTION parameter, 6–375
SYSTEM INDEX PREFIX TYPE IS

parameter, 6–375
THRESHOLD IS clause

of DETECTED ASYNC PREFETCH
clause, 6–376

THRESHOLDS clause
storage area parameter, 6–376

used in program

Index–11

CREATE DATABASE statement
used in program (cont’d)

restriction, 6–382
USER clause, 6–376
USING clause

of USER clause, 6–377
using multiple character sets, 6–328
WAIT clause

of OPEN clause, 6–378
WORKLOAD COLLECTION clause, 6–378

CREATE DOMAIN statement, 6–393
COLLATING SEQUENCE clause, 6–397,

6–403
COMMENT IS clause, 6–397
domain constraint clause, 6–398
FROM path-name clause, 6–399
in CREATE SCHEMA statement, 6–516
NO COLLATING SEQUENCE clause, 6–400
of CREATE DATABASE statement, 6–345
STORED NAME IS clause, 6–400
use of National Character Set (NCS) utility,

6–397
CREATE FUNCTION statement, 6–406, 6–494

in CREATE SCHEMA statement, 6–516
of CREATE DATABASE statement, 6–345

CREATE INDEX statement, 6–407
DISABLE COMPRESSION clause, 6–411
ENABLE COMPRESSION clause, 6–412
in CREATE SCHEMA statement, 6–516
MAINTENANCE clause, 6–414
of CREATE DATABASE statement, 6–345
PREFIX CARDINALITY COLLECTION IS

DISABLED clause, 6–416
PREFIX CARDINALITY COLLECTION IS

ENABLED clause, 6–416
PREFIX CARDINALITY COLLECTION IS

ENABLED FULL clause, 6–416
restriction, 6–425
STORED NAME IS clause, 6–417
TYPE IS HASHED ORDERED clause, 6–418
TYPE IS HASHED SCATTERED clause,

6–418
TYPE IS SORTED clause, 6–420
TYPE IS SORTED RANKED clause, 6–421

CREATE MODULE statement, 6–433
in CREATE SCHEMA statement, 6–516
of CREATE DATABASE statement, 6–345

CREATE OUTLINE statement, 6–457
CREATE PROCEDURE statement, 6–483,

6–494
in CREATE SCHEMA statement, 6–516
of CREATE DATABASE statement, 6–345

Create Routine statement
See CREATE FUNCTION statement
See CREATE PROCEDURE statement

CREATE ROUTINE statement
in CREATE SCHEMA statement, 6–516
of CREATE DATABASE statement, 6–345

CREATE SCHEMA statement, 6–514
See also CREATE DATABASE statement
AUTHORIZATION clause, 6–516
authorization identifier, 6–516
CREATE COLLATING SEQUENCE

statement, 6–516
CREATE DOMAIN statement, 6–516
CREATE FUNCTION statement, 6–516
CREATE INDEX statement, 6–516
CREATE MODULE statement, 6–516
CREATE PROCEDURE statement, 6–516
CREATE SEQUENCE statement, 6–516
CREATE STORAGE MAP statement, 6–517
CREATE TABLE statement, 6–517
CREATE TRIGGER statement, 6–517
CREATE VIEW statement, 6–517
environment, 6–515
GRANT statement, 6–517
in dynamic SQL, 6–515
in embedded SQL, 6–515
in interactive SQL, 6–515
of CREATE DATABASE statement, 6–345
schema name clause, 6–517

CREATE SEQUENCE statement
in CREATE SCHEMA statement, 6–516

CREATE statement
general usage notes, 6–307

CREATE STORAGE AREA clause
of CREATE DATABASE statement, 6–345

Index–12

CREATE STORAGE MAP statement
in CREATE SCHEMA statement, 6–517
of CREATE DATABASE statement, 6–345

CREATE TABLE statement
in CREATE SCHEMA statement, 6–517
of CREATE DATABASE statement, 6–346
specifying domains for data types, 6–393

CREATE TRIGGER statement
in CREATE SCHEMA statement, 6–517
of CREATE DATABASE statement, 6–346

CREATE VIEW statement
in CREATE SCHEMA statement, 6–517
of CREATE DATABASE statement, 6–346

Creating
catalogs, 6–319
collating sequence, 6–323

restriction, 6–325, 6–380
comments, 6–266
constraints

in ALTER TABLE statement, 6–186
databases, 6–328

collating sequence restriction, 6–325,
6–380

using multiple character sets, 6–328
domains, 6–393
indexes, 6–407
query outline, 6–457
row cache, 6–308
schemas, 6–514
storage areas, 6–24

Cursor
closing, 6–264

D
Data

inserting into rows automatically, 6–193
Database

access, 6–50, 6–64
adding comments on, 6–266
allocating buffers, 6–48, 6–360
allocating pages, 6–27, 6–339
allocating snapshot pages, 6–60, 6–372
ALTER DATABASE statement, 6–12
assigning row caches, 6–340

Database (cont’d)
attaching to

with ATTACH statement, 6–238 to 6–248
automatic recovery process, 6–49, 6–361
buffer size, 6–31, 6–340
creating, 6–328
default, 6–338
default character set, 6–329, 6–347
disabling snapshot file, 6–61, 6–373
enabling global buffers, 6–41, 6–351
enabling multischema for, 6–244
enabling snapshot file, 6–61, 6–372, 6–374
identifier character set, 6–329, 6–351
invoking, 6–238 to 6–248
limiting users, 6–50, 6–362
maximum number of cluster nodes, 6–48,

6–361
multifile, 6–328
multiple attachments to same database,

6–246
national character set, 6–329, 6–358
page size, 6–363
restricted access to, 6–245, 6–369
single-file, 6–328
specifying extent pages, 6–60, 6–373
specifying maximum number of global buffers,

6–63, 6–376
specifying multischema attribute for, 6–46,

6–357
specifying number of global buffers, 6–48,

6–360
Database access

restricted, 6–245, 6–369
Database default storage area, 6–347
Database environment

attaching database to, 6–238
implicit, 6–295

Database key
in hashed index, 6–420

Database option
for OpenVMS, 6–242
of ATTACH statement, 6–242

Databases
disabling user access to, 6–229

Index–13

Database statistics
collection of, 6–61, 6–374

Data definition
disabling changes, 6–46, 6–357
enabling changes, 6–46, 6–357

Date-time data types
in CREATE DOMAIN statement, 6–91, 6–398

DBKEY SCOPE clause
of ATTACH statement, 6–242
of CREATE DATABASE statement, 6–346

Deadlock
on multiple attachments to same database,

6–246
Deassigning row cache, 6–359
DECdtm services, 6–303
Declaring variable

in compound statement, 6–291
Default character set

of CREATE DATABASE statement, 6–347
of database, 6–329, 6–347

Default database
with ATTACH statement, 6–240
with CREATE DATABASE statement, 6–338

DEFAULT STORAGE AREA clause
of CREATE DATABASE statement, 6–347

Default value
dropping

in ALTER DOMAIN statement, 6–92
in ALTER TABLE statement, 6–199

removing, 6–95, 6–206
specifying

in ALTER DOMAIN statement, 6–95,
6–99

in ALTER TABLE statement, 6–197,
6–202, 6–206, 6–215

in CREATE DOMAIN statement, 6–91,
6–398, 6–400, 6–403

DEFERRABLE clause
of ALTER TABLE statement, 6–194

DEFERRABLE constraint attribute, 6–195
DEFERRABLE INITIALLY DEFERRED

constraint attribute, 6–195

DEFERRABLE INITIALLY IMMEDIATE
constraint attribute, 6–195

Deleting
columns in tables, 6–186
constraints in tables, 6–186

DEPTH clause
of ASYNC PREFETCH clause

of ALTER DATABASE statement, 6–36
of CREATE DATABASE statement,

6–348
of DETECTED ASYNC PREFETCH clause

of ALTER DATABASE statement, 6–36
of CREATE DATABASE statement,

6–348
Detected asynchronous prefetch, 6–37, 6–348
DETECTED ASYNC PREFETCH clause

of ALTER DATABASE statement, 6–37
of CREATE DATABASE statement, 6–348

DICTIONARY clause
of ALTER DATABASE statement, 6–37
of CREATE DATABASE statement, 6–348

DISABLE COMPRESSION clause
of CREATE INDEX statement, 6–411

Disabling data definition changes, 6–46, 6–357
Disabling index, 6–116
Disabling index compression, 6–411
DISK keyword

of PAGE TRANSFER clause, 6–364
Distributed transaction manager, 6–303
Domain

See also ALTER DOMAIN statement;
CREATE DOMAIN statement; DROP
DOMAIN statement in Volume 3

adding comments on, 6–266
creating

using character set, 6–393
default value, 6–91, 6–92, 6–95, 6–99, 6–398,

6–400, 6–403
specifying

in ALTER TABLE statements, 6–393
in CREATE TABLE statements, 6–393
in SQL module parameter declarations,

6–393
instead of data type, 6–393

Index–14

Domain constraint
adding, 6–92
altering, 6–92
creating, 6–398

Domain constraint clause
of ALTER DOMAIN statement, 6–92
of CREATE DOMAIN statement, 6–398

Domains
adding comments to, 6–91, 6–397

DROP CACHE clause
of ALTER DATABASE statement, 6–38

DROP CONSTRAINT clause
of ALTER TABLE statement, 6–199

DROP JOURNAL clause
of ALTER DATABASE statement, 6–38

Dropping
after-image journal, 6–38
row cache, 6–38
storage area, 6–38

DROP STORAGE AREA clause
of ALTER DATABASE statement, 6–38

E
ENABLE COMPRESSION clause

of CREATE INDEX statement, 6–412
Enabling data definition changes, 6–46, 6–357
Enabling index compression, 6–412
END DECLARE statement

required terminators, 6–249
Ending

transactions
COMMIT statement, 6–274 to 6–279

Ending label
in compound statement, 6–285

END keyword
in compound statement, 6–285

Entry
modifying for a user class, 6–229
modifying for a user name, 6–229

Environments
See Database environment

Evaluation time
specifying for constraints, 6–194

EXTENT clause
alter storage area parameter

of ALTER DATABASE statement, 6–38
of ALTER STORAGE AREA clause, 6–38
of CREATE CACHE clause, 6–310
of JOURNAL clause

ALTER DATABASE statement, 6–38
storage area parameter

of CREATE DATABASE statement,
6–349

Extent page, specifying, 6–373
External functions

creating, 6–406, 6–494
EXTERNAL NAME IS clause

See STORED NAME IS clause
External procedure

calling, 6–255
creating, 6–483, 6–494

External routine
creating, 6–494

F
FAST COMMIT clause

of JOURNAL clause
of ALTER DATABASE statement, 6–39

Fast commit processing, 6–39
FILENAME clause

ATTACH statement, 6–243
CONNECT statement, 6–300
of ADD JOURNAL clause

of ALTER DATABASE statement, 6–40
of ALTER DATABASE statement, 6–40
of CREATE DATABASE statement, 6–349

File specification
in ALTER DATABASE statement, 6–40
in CREATE DATABASE statement, 6–349

Filling storage areas, 6–173
Formatting clauses

using in ALTER DOMAIN statement, 6–93
using in CREATE DOMAIN statement, 6–400

FROM path-name clause
in CREATE DOMAIN statement, 6–399

Index–15

G
GALAXY SUPPORT clause

of ALTER DATABASE statement, 6–40
of CREATE DATABASE statement, 6–350

Global buffers
enabling, 6–41, 6–351
specifying default number of buffers, 6–48,

6–360
GLOBAL BUFFERS clause

of ALTER DATABASE statement, 6–41
of CREATE DATABASE statement, 6–351

Global field
See Domain

GRANT statement
in CREATE SCHEMA statement, 6–517
of CREATE DATABASE statement, 6–351

H
Hash bucket, 6–420
Hashed index, 6–420

adding partition to, 6–114
compressing, 6–412

I
Identifier character set

of CREATE DATABASE statement, 6–351
of database, 6–329, 6–351

Incremental backup, 6–41, 6–351
INCREMENTAL BACKUP SCAN

OPTIMIZATION clause
of ALTER DATABASE statement, 6–41
of CREATE DATABASE statement, 6–351

Index
adding comments on, 6–266
ALTER INDEX statement, 6–111
associating directly with a storage area,

6–115
compressed, 6–414
CREATE INDEX statement, 6–407
defining, 6–407
disabling, 6–116

Index (cont’d)
disabling compression, 6–411
enabling, 6–116
enabling compression, 6–412
hashed, 6–420
limiting key characters, 6–416
naming a partition of, 6–117
partitioned, 6–413
restrictions on field attribute and data type,

6–423
sorted nonranked, 6–420
sorted ranked, 6–421
thresholds for logical areas, 6–418

Index compression
disabled, 6–411
enabled, 6–412
hashed, 6–412
minimum length, 6–414
restriction, 6–120, 6–411, 6–412
sorted, 6–412

Indexes
altering, 6–115
converting to non-unique, 6–115
disabling logging to .aij file, 6–115

Index key
specifying limits for, 6–119

Index storage map definition
adding a comment to, 6–115

INITIALLY DEFERRED clause
of ALTER TABLE statement, 6–194

INITIALLY DEFERRED constraint attribute,
6–195

INITIALLY DEFERRED DEFERRABLE
constraint attribute, 6–195

INITIALLY IMMEDIATE constraint attribute,
6–195

INITIALLY IMMEDIATE DEFERRABLE
constraint attribute, 6–195

INITIALLY IMMEDIATE NOT DEFERRABLE
constraint attribute, 6–195

INITIALLY IMMEDIATE NOT DEFERRED
constraint attribute, 6–194

INOUT parameter
for stored function, 6–437

Index–16

IN parameter
for stored function, 6–437

Internationalization features
See also COLLATING SEQUENCE clause
See also CREATE COLLATING SEQUENCE

statement
See also NO COLLATING SEQUENCE clause
CREATE DATABASE statement, COLLATING

SEQUENCE clause, 6–343
CREATE DATABASE statement, CREATE

COLLATING SEQUENCE clause, 6–344
CREATE SCHEMA statement, CREATE

COLLATING SEQUENCE statement,
6–516

INTERVAL clause
storage area parameter

of CREATE DATABASE statement,
6–352

J
JOURNAL clause

of ALTER DATABASE statement, 6–42
Journal fast commit, 6–39
Journaling

adding journal file, 6–76
after-image journals, 6–42
backup server, 6–31
extensible, 6–76

JOURNAL IS UNSUPPRESSED clause
of ALTER JOURNAL clause

of ALTER JOURNAL clause, 6–42
Journal reservation, 6–55, 6–367

restriction, 6–55

L
Label

beginning, 6–284
Labeled compound statement, 6–284
LARGE MEMORY clause

of ADD CACHE clause
of ALTER DATABASE statement, 6–353

of ALTER CACHE clause
of ALTER DATABASE statement, 6–353

Limiting number of database users, 6–50, 6–362
Limits and parameters

maximum index size, 6–414
maximum length for an index key, 6–425
maximum length of comment string, 6–271
maximum length of database object name,

6–463
maximum number of buffer blocks, 6–31
maximum number of users, 6–50, 6–362
maximum row length for row caches, 6–312
maximum snapshot extent pages, 6–46
minimum block allocation for .aij file, 6–26
minimum number of users, 6–50, 6–362
minimum snapshot extent pages, 6–46

LIMIT TO AREAS clause
of MULTITHREAD AREA ADDITIONS clause

of CREATE DATABASE statement,
6–353

List
filling storage areas

randomly, 6–173
sequentially, 6–173

storing in multiple storage areas, 6–175
LIST STORAGE AREA clause

of CREATE DATABASE statement, 6–353
LOCATION clause

of ADD CACHE clause
of ALTER DATABASE statement, 6–43

of ALTER CACHE clause
of ALTER DATABASE statement, 6–43

of CREATE CACHE clause, 6–311
LOCATION IS clause

of ROW CACHE clause
of CREATE DATABASE statement,

6–354
LOCKING clause

alter storage area parameter
ALTER DATABASE statement, 6–44

of ALTER STORAGE AREA clause, 6–44
storage area parameter

of CREATE DATABASE statement,
6–355

Lock optimization, 6–32, 6–341

Index–17

LOCK PARTITIONING clause
of ALTER DATABASE statement, 6–43
of CREATE DATABASE statement, 6–354

LOCK TIMEOUT INTERVAL clause
of ALTER DATABASE statement, 6–43
of CREATE DATABASE statement, 6–355

Lock timeouts, 6–43, 6–355
Logging to after-image journal (.aij) file

disabling for ALTER STORAGE MAP
statement, 6–174

Logical area threshold
for indexes, 6–418, 6–428

LOGMINER SUPPORT clause
of ALTER DATABASE statement, 6–45
of CREATE DATABASE statement, 6–356

Log server
See ALS

LOG SERVER clause
of JOURNAL clause

of ALTER DATABASE statement, 6–44

M
MAINTENANCE IS DISABLED clause

ALTER INDEX statement, 6–116
MAINTENANCE IS ENSABLED clause

ALTER INDEX statement, 6–116
MAXIMUM BUFFER COUNT clause

of ASYNC BATCH WRITES clause
of ALTER DATABASE statement, 6–45
of CREATE DATABASE statement,

6–356
MEMORY keyword

of PAGE TRANSFER clause, 6–364
METADATA CHANGES clause

of ALTER DATABASE statement, 6–46
of CREATE DATABASE statement, 6–357

Mixed storage areas, 6–363
Modifying

column definitions, 6–186
columns in tables, 6–186
comments, 6–266
indexes, 6–111
storage maps, 6–169
table definitions, 6–186

Modules
adding comments to, 6–135

Multifile databases, 6–328
Multinational character set

See OpenVMS National Character Set (NCS)
utility

Multiple attachments to same database, 6–246
Multiple character sets

using with CREATE DATABASE statement,
6–328

MULTISCHEMA clause
of ALTER DATABASE statement, 6–46
of CREATE DATABASE statement, 6–357

Multischema databases
attaching to, 6–244
creating, 6–46, 6–357

MULTISCHEMA IS ON clause
in ATTACH statement, 6–244

Multistatement procedure
compound statement and, 6–280
restriction, 6–289

Multistring comment
ALTER MODULE statement, 6–135
COMMENT ON statement, 6–269
CREATE COLLATING SEQUENCE

statement, 6–324
CREATE DATABASE statement, 6–344
CREATE FUNCTION statement, 6–498
CREATE MODULE statement, 6–435
CREATE OUTLINE statement, 6–460
CREATE PROCEDURE statement, 6–498

MULTITHREAD AREA ADDITIONS clause
of CREATE DATABASE statement, 6–358

N
Named compound statement, 6–284
NAMES clause

of CONNECT statement, 6–301
National character set

of CREATE DATABASE statement, 6–358
of database, 6–329, 6–358

National Character Set (NCS) utility
See OpenVMS National Character Set (NCS)

utility

Index–18

NCS options
of COLLATING SEQUENCE clause

of CREATE DATABASE statement,
6–358

NO BACKUP FILENAME clause
of JOURNAL clause

of ALTER DATABASE statement, 6–47
NO COLLATING SEQUENCE clause

of ALTER DOMAIN statement, 6–93
of CREATE DOMAIN statement, 6–400

NO COMMIT TO JOURNAL OPTIMIZATION
clause

of FAST COMMIT clause
of ALTER DATABASE statement, 6–36

NO LOCATION clause
of CREATE CACHE clause, 6–311
of ROW CACHE clause

of ALTER DATABASE statement, 6–47
of CREATE DATABASE statement,

6–359
Nonranked B-tree index

See Sorted index
Nonstored procedures

calling stored procedures from, 6–252, 6–255
NO PLACEMENT VIA INDEX clause

ALTER STORAGE MAP statement, 6–174
NO ROW CACHE clause

alter storage area parameter
of ALTER DATABASE statement, 6–47

of ALTER STORAGE AREA clause, 6–47
storage area parameter

of CREATE DATABASE statement,
6–359

NO SWEEP INTERVAL clause
of ROW CACHE clause

of ALTER DATABASE statement, 6–47
NOT ATOMIC keyword

in compound statement, 6–283
NOT DEFERRABLE clause

of ALTER TABLE statement, 6–194
NOT DEFERRABLE constraint attribute, 6–195
NOT DEFERRABLE INITIALLY IMMEDIATE

constraint attribute, 6–195

NOTIFY clause
of JOURNAL clause

of ALTER DATABASE statement, 6–47
of CREATE DATABASE statement,

6–359
NULL column constraint, 6–201
NUMBER IS clause

of GLOBAL BUFFERS clause
of ALTER DATABASE statement, 6–48
of CREATE DATABASE statement,

6–360, 6–364, 6–376
NUMBER OF BUFFERS clause

of ALTER DATABASE statement, 6–48
of CREATE DATABASE statement, 6–360

NUMBER OF CLUSTER NODES clause
of ALTER DATABASE statement, 6–48
of CREATE DATABASE statement, 6–361

NUMBER OF RECOVERY BUFFERS clause
of ALTER DATABASE statement, 6–49
of CREATE DATABASE statement, 6–361

NUMBER OF RESERVED ROWS clause
of CREATE CACHE clause, 6–311

NUMBER OF SWEEP ROWS clause
of ADD CACHE clause

of ALTER DATABASE statement, 6–49,
6–362

of ALTER CACHE clause
of ALTER DATABASE statement, 6–49,

6–362
of CREATE CACHE clause, 6–311

NUMBER OF USERS clause
of ALTER DATABASE statement, 6–50
of CREATE DATABASE statement, 6–362

O
ON ALIAS keywords

in compound statement, 6–286
Online modification

of database, 6–69
of storage areas, 6–77

OPEN clause
of ALTER DATABASE statement, 6–50
of CREATE DATABASE statement, 6–362
WAIT clause, 6–64

Index–19

OpenVMS National Character Set (NCS) utility
See also NCS options
default library, 6–324, 6–358
SYS$LIBRARY:NCS$LIBRARY, 6–324, 6–358
used by ALTER DOMAIN statement, 6–91
used by CREATE COLLATING SEQUENCE

statement, 6–323
used by CREATE DATABASE statement,

6–358
used by CREATE DOMAIN statement, 6–397

Operator class
notified of journaling event, 6–25

Optimizer
restrictions on index fields, 6–423

Optimizing
NOWAIT lock acquisition, 6–32, 6–341

Oracle Rdb databases
specifying in ATTACH statement, 6–242

OTHERWISE clause
in index definition, 6–424
of ALTER STORAGE MAP statement, 6–178

Outine
adding comments on, 6–266

OUT parameter
for stored function, 6–437

Overflow partition
for storage map, 6–178
in index definition, 6–424

OVERWRITE clause
of JOURNAL clause

of ALTER DATABASE statement, 6–50

P
PAGE FORMAT clause

storage area parameter
of CREATE DATABASE statement,

6–363
PAGE keyword

of REORGANIZE clause, 6–174
Page-level locking, 6–355
PAGE SIZE clause

storage area parameter
of CREATE DATABASE statement,

6–363

PAGE TRANSFER clause
DISK keyword, 6–51
MEMORY keyword, 6–51
of GLOBAL BUFFERS clause

of ALTER DATABASE statement, 6–51
Parameter

database root file, 6–328
for stored function, 6–437
storage area, 6–328, 6–374

partitioned indexes
specifying limits for, 6–119

Partitioning indexes, 6–413
PARTITIONING IS UPDATABLE clause

ALTER STORAGE MAP statement, 6–174
Partitions

adding to hashed index, 6–114
dropping from an index, 6–115
moving, 6–116
naming, 6–174
renaming, 6–118

PATHNAME clause
ATTACH statement, 6–244
CONNECT statement, 6–301
of ALTER DATABASE statement, 6–40
of CREATE DATABASE statement, 6–364

Performance
improving database automatic recovery

process, 6–49, 6–361
PLACEMENT VIA INDEX clause

of ALTER STORAGE MAP statement, 6–174
Prefetch

asynchronous, 6–29, 6–339
detected asynchronous, 6–37, 6–348

PREFIX CARDINALITY COLLECTION, 6–117,
6–375

PREFIX CARDINALITY COLLECTION IS
DISABLED clause

ALTER INDEX statement, 6–117
CREATE INDEX statement, 6–416

PREFIX CARDINALITY COLLECTION IS
ENABLED clause

ALTER INDEX statement, 6–117
CREATE INDEX statement, 6–416

Index–20

PREFIX CARDINALITY COLLECTION IS
ENABLED FULL clause

ALTER INDEX statement, 6–118
CREATE INDEX statement, 6–416

Prestarted transaction
disabling, 6–244, 6–365

PRESTARTED TRANSACTIONS ARE
DISABLED clause

of ALTER DATABASE statement, 6–52
PRESTARTED TRANSACTIONS clause

of ALTER DATABASE statement, 6–51
of ATTACH statement, 6–244
of CREATE DATABASE statement, 6–365

Primary key values
altering the sequence for generating, 6–160

Privilege
PROTECTION clause

of CREATE DATABASE statement,
6–366

Process
failure, 6–49, 6–361

Profile
adding comments on, 6–266

PROTECTION clause
of CREATE DATABASE statement, 6–366

PUBLIC user, 6–230

Q
Query outlines

creating, 6–457
naming for a compound statement, 6–286

R
Ranked B-tree index

See Sorted index
RDB$CLIENT_DEFAULTS.DAT configuration

file, 6–243
RDB$DBHANDLE default alias, 6–241

in ATTACH statement, 6–240
in CONNECT statement, 6–299
in CREATE DATABASE statement, 6–338

RDB$SYSTEM storage area
changing to read/write, 6–28, 6–52
changing to read-only, 6–28, 6–52
restriction, 6–75

Rdb/VMS databases
See Oracle Rdb databases

Read/write RDB$SYSTEM storage area
changing, 6–28, 6–52
creating, 6–28, 6–52

Read/write storage area
changing, 6–52
creating, 6–52

Read/write system table
changing, 6–52
creating, 6–52

READ ONLY clause
alter storage area parameter

of ALTER DATABASE statement, 6–52
of ALTER STORAGE AREA clause, 6–52

Read-only RDB$SYSTEM storage area
changing, 6–52
creating, 6–52

Read-only storage area
changing, 6–52
creating, 6–52

Read-only system table
changing, 6–52
creating, 6–52

READ WRITE clause
alter storage area parameter

of ALTER DATABASE statement, 6–52
of ALTER STORAGE AREA clause, 6–52

READ WRITE clause of ALTER DATABASE
statement, 6–28

Recovery buffers
specifying in

ALTER DATABASE statement, 6–49
CREATE DATABASE statement, 6–361

RECOVERY JOURNAL clause
of ALTER DATABASE statement, 6–54
of CREATE DATABASE statement, 6–367

Recovery-unit journal file, 6–49, 6–361
REFERENCES clause

of ALTER TABLE statement, 6–202

Index–21

Referencing table, 6–201, 6–202
RENAME PARTITION clause

of ALTER STORAGE MAP statement, 6–175
REORGANIZE clause

of ALTER STORAGE MAP statement, 6–175
Repository

path names
in ATTACH statement, 6–244
in CONNECT statement, 6–301
in CREATE DATABASE statement,

6–364
in CREATE DOMAIN statement, 6–399

RESERVE CACHE SLOTS clause
of ALTER DATABASE statement, 6–55
of CREATE DATABASE statement, 6–367

RESERVE JOURNALS clause
of ALTER DATABASE statement, 6–55
of CREATE DATABASE statement, 6–367

RESERVE SEQUENCES clause
of ALTER DATABASE statement, 6–55

RESERVE STORAGE AREAS clause
of ALTER DATABASE statement, 6–56
of CREATE DATABASE statement, 6–368

Reserving
after-image journals, 6–367
after-image journal slots, 6–55
row cache slots, 6–55, 6–367
storage area slots

restriction, 6–77
storage areas slots, 6–56, 6–368

RESTRICTED ACCESS clause
of ATTACH statement, 6–245
of CREATE DATABASE statement, 6–369

Restricted access to database, 6–245, 6–369
Restriction

ALTER DATABASE statement, 6–74, 6–75,
6–77

ALTER DOMAIN statement, 6–95
compound statement, 6–289
CREATE DATABASE statement, 6–380

including COMMENT ON statement,
6–382

used in program, 6–382
CREATE DOMAIN statement

repository field structures, 6–401

Restriction (cont’d)
for row cache, 6–77, 6–313
in compound statement, 6–284
index compression, 6–120, 6–411, 6–412
index naming, 6–425
multistatement procedures, 6–289
Norwegian collating sequence, 6–326
one alias referenced in a compound statement,

6–280, 6–289
RDB$SYSTEM storage area, 6–75
reserving journals, 6–55
reserving storage areas, 6–77
single-file database, 6–74, 6–380
snapshot file name, 6–74, 6–380

Roles
adding comments to, 6–154, 6–157, 6–226
inheriting from operating system facilities,

6–157
renaming, 6–158

Root file parameters
of CREATE DATABASE statement, 6–328,

6–369
Row cache

adding, 6–24
allocating memory, 6–353
altering, 6–27
assigning to storage area, 6–32
assignment, 6–340
backing store directory for, 6–43, 6–47,

6–354, 6–359
creating, 6–308
deassignment, 6–359
default backing store directory for, 6–43,

6–47, 6–354, 6–359
dropping, 6–38
enabling, 6–56, 6–369
specifying a directory, 6–43
specifying number of sweep rows, 6–49, 6–362

ROW CACHE clause
of ALTER DATABASE statement, 6–56
of CREATE DATABASE statement, 6–369

Row cache reservation, 6–55, 6–367
Row caches

checkpointing and, 6–34, 6–342
specifying file for checkpointed rows, 6–34,

6–342

Index–22

Row caches (cont’d)
specifying where checkpointed rows are

written, 6–34, 6–342
ROWID SCOPE clause

of ATTACH statement, 6–245
of CREATE DATABASE statement, 6–370

ROW LENGTH clause
of CREATE CACHE clause, 6–312

Row-level locking, 6–355
ROW REPLACEMENT clause

of CREATE CACHE clause, 6–312
Rows

inserting data into automatically, 6–193
ROW SNAPSHOT clause

of CREATE CACHE clause, 6–312
Ruj file

disabling logging to ALTER STORAGE MAP
statement, 6–169

RUJ file
specifying device and directory for, 6–54
specifying global or local memory allocation,

6–54, 6–366

S
SAME BACKUP FILENAME AS JOURNAL

clause
of ADD JOURNAL clause

of ALTER DATABASE statement, 6–57
Schema

See also Database
adding comments on, 6–266
CREATE DATABASE statement, 6–328
CREATE SCHEMA statement, 6–514
defining, 6–514
naming, 6–517

SCHEMA clause
of CONNECT statement, 6–301

Security checking
external, 6–57, 6–370
internal, 6–57, 6–370

Security profile
changing for a user name, 6–230

Segmented string
whose segments vary greatly in size, 6–353

SEGMENTED STRING clause
of CREATE DATABASE statement, 6–371

SEGMENTED STRING STORAGE AREA clause
of CREATE DATABASE statement, 6–353

Sequences
adding comments to, 6–162
altering, 6–160
ascending, 6–162
cycling of, 6–162
descending, 6–162
keeping values in memory, 6–161
maximum value, 6–162
minimum value, 6–163
ordered, 6–164
preallocating values for, 6–161
randomizing, 6–164
reserving slots for, 6–55, 6–368
specifying increment of, 6–162
specifying the wait state, 6–165
unordered, 6–164

SET control statement, 6–291
SET TRANSACTION MODES clause

of ALTER DATABASE statement, 6–59
of CREATE DATABASE statement, 6–371
transaction modes, 6–63, 6–377

SHARED MEMORY clause
of ALTER DATABASE statement, 6–59
of CREATE CACHE clause, 6–312
of CREATE DATABASE statement, 6–372

Shared system buffers (SSB), 6–59, 6–312,
6–372

SHUTDOWN TIME clause
of JOURNAL clause

of ALTER DATABASE statement, 6–60
Single-file database, 6–328

restriction, 6–74, 6–380
Slots

reserving for sequences, 6–55, 6–368
SNAPSHOT ALLOCATION clause

alter storage area parameter
of ALTER DATABASE statement, 6–60
of CREATE DATABASE statement,

6–372

Index–23

SNAPSHOT ALLOCATION clause (cont’d)
of ALTER STORAGE AREA clause, 6–60
of CREATE DATABASE clause, 6–372

SNAPSHOT CHECKSUM ALLOCATION clause
alter storage area parameter

of CREATE DATABASE statement,
6–372

SNAPSHOT DISABLED clause
of ALTER DATABASE statement, 6–61
of CREATE DATABASE statement, 6–373

SNAPSHOT ENABLED clause
of ALTER DATABASE statement, 6–61
of CREATE DATABASE statement, 6–372,

6–374
SNAPSHOT EXTENT clause

alter storage area parameter
of ALTER DATABASE statement, 6–60

of ALTER STORAGE AREA clause, 6–60
storage area parameter

of CREATE DATABASE statement,
6–373

Snapshot file
moving, 6–75

Snapshot file name
restriction, 6–74, 6–380

SNAPSHOT FILENAME clause
storage area parameter

of CREATE DATABASE statement,
6–373

snapshots of database records, 6–312
Sorted index

compressing, 6–412
nonranked, 6–420
ranked, 6–421

SPAM thresholds, 6–418
SQL mapping routine

ALTER STORAGE MAP statement, 6–172
SQL module language

specifying domains for data types, 6–393
SQL statements

ALTER ROLE, 6–157
ALTER SEQUENCE, 6–160
ALTER TRIGGER, 6–226
ALTER USER, 6–229
CASE (searched) control, 6–259

SQL_PASSWORD configuration parameter,
6–243

SQL_USERNAME configuration parameter,
6–243

SSB
See Shared system buffers

Statistics
disabling for a database, 6–61, 6–374

Statistics collection
database, 6–61, 6–374

STATISTICS COLLECTION clause
of ALTER DATABASE statement, 6–61
of CREATE DATABASE statement, 6–374

Storage area
adding, 6–24, 6–56, 6–76
ADD STORAGE AREA clause of ALTER

DATABASE statement, 6–24
ALTER STORAGE AREA clause of ALTER

DATABASE statement, 6–28
creating asynchronously, 6–358
database default, 6–347
DROP STORAGE AREA clause of ALTER

DATABASE statement, 6–38
for lists, 6–175

filling randomly, 6–173
filling sequentially, 6–173

for segmented strings, 6–353
mixed, 6–363
moving, 6–75
uniform, 6–363

Storage area parameter, 6–328
allocating pages, 6–27, 6–339
allocating snapshot pages, 6–60, 6–372
assigning row cache, 6–340
cache assignment, 6–32
checksum calculation, 6–35, 6–342
data pages, 6–352
deassigning row cache, 6–359
extent options, 6–38, 6–349
locking level, 6–44, 6–355
of CREATE DATABASE statement, 6–374
page format, 6–363
page size, 6–363
read/write options, 6–52
snapshot extent, 6–373

Index–24

Storage area parameter (cont’d)
snapshot file name, 6–373
specifying extent pages, 6–60
thresholds, 6–376

Storage area reservation, 6–56, 6–368
STORAGE MAP clause

of ALTER STORAGE MAP statement, 6–175
Storage maps

adding a comment to, 6–172
altering a comment, 6–172
ALTER STORAGE MAP statement, 6–169
modifying, 6–169

STORE clause
of ALTER STORAGE MAP statement, 6–175

Stored function
See also CREATE MODULE statement
creating, 6–433
parameters, 6–437

Stored module
creating, 6–433

STORED NAME IS clause
of CREATE COLLATING SEQUENCE

statement, 6–324
of CREATE DOMAIN statement, 6–400
of CREATE INDEX statement, 6–417

Stored procedure
See also CREATE MODULE statement
calling, 6–252, 6–255
creating, 6–433

Stored routine
See Stored function
See Stored procedure

STORE LISTS clause
of ALTER STORAGE MAP statement, 6–175

SWEEP INTERVAL clause
of ROW CACHE clause

of ALTER DATABASE statement, 6–62,
6–375

Synonym
adding comments on, 6–266

SYS$LIBRARY:NCS$LIBRARY
default NCS library, 6–324, 6–358

System failure, 6–49, 6–361

SYSTEM INDEX parameter
of CREATE DATABASE statement, 6–375

SYSTEM INDEX PREFIX CARDINALITY
COLLECTION parameter

of CREATE DATABASE statement, 6–375
SYSTEM INDEX PREFIX TYPE IS parameter

of CREATE DATABASE statement, 6–375
System tables

Consult online SQL Help for this information
SYSTEM_USER function

setting, 6–64, 6–245, 6–376

T
Table

adding
columns, 6–186
constraints, 6–186

adding comments on, 6–266
ALTER TABLE statement, 6–186
deleting

columns, 6–186
constraints, 6–186

modifying columns, 6–186
referencing, 6–201, 6–202

Table columns
adding, 6–186

Tables
disabling constraints for, 6–199
disabling triggers for, 6–199
displayed order of columns for, 6–192

Terminators
required for BEGIN DECLARE statement,

6–249
required for END DECLARE statement,

6–249
THRESHOLD IS clause

of DETECTED ASYNC PREFETCH clause
of ALTER DATABASE statement, 6–62
of CREATE DATABASE statement,

6–376
THRESHOLDS clause

of ALTER STORAGE MAP statement, 6–176
of CREATE INDEX statement, 6–418
storage area parameter

Index–25

THRESHOLDS clause
storage area parameter (cont’d)

of CREATE DATABASE statement,
6–376

Timeout intervals
specifying, 6–43, 6–355

TO clause
of CONNECT statement, 6–302

TRANSACTION INTERVAL clause
of FAST COMMIT clause

of ALTER DATABASE statement, 6–62
Transaction modes

for ALTER TRANSACTION MODES clause,
6–63, 6–377

for SET TRANSACTION MODES clause,
6–63, 6–377

Transactions
COMMIT statement, 6–274 to 6–279
CONNECT statement, 6–295
prestarted

disabling, 6–244, 6–365
Transferring pages

to disk, 6–51, 6–364
via memory, 6–51, 6–364

Triggers
disabling, 6–199, 6–226
enabling, 6–226

TYPE IS HASHED ORDERED clause
of CREATE INDEX statement, 6–418

TYPE IS HASHED SCATTERED clause
of CREATE INDEX statement, 6–418

TYPE IS SORTED clause
of CREATE INDEX statement, 6–420

TYPE IS SORTED RANKED clause
of CREATE INDEX statement, 6–421

U
Undo/redo recovery processing

checkpointing, 6–39
Uniform storage areas, 6–363

threshold values, 6–418
Unique indexes

converting to non-unique, 6–115

User authentication
ALTER DATABASE statement, 6–43
ATTACH statement, 6–243
CONNECT statement, 6–301, 6–302
CREATE DATABASE statement, 6–354

User class
modifying entry for, 6–229

USER clause
ATTACH statement, 6–245, 6–248
CONNECT statement, 6–302
of ALTER DATABASE statement, 6–64
of CREATE DATABASE statement, 6–376

USER LIMIT clause
of GLOBAL BUFFERS clause

of ALTER DATABASE statement, 6–63
User name

changing, 6–230
changing security profile for, 6–230
modifying entry for, 6–229

Users
authentication of, 6–230
defining a comment for, 6–230
disabling access to database, 6–229

User session (SQL92)
See Connection

USING clause
ATTACH statement, 6–246
CONNECT statement, 6–302
of USER clause

of ALTER DATABASE statement, 6–64
of CREATE DATABASE statement,

6–377

V
Value expression

DEFAULT value, 6–91, 6–93, 6–197, 6–436,
6–437, 6–498

VARCHAR data type
index field, 6–423

Very large memory (VLM), 6–353
View

altering, 6–232

Index–26

VLM
See Very large memory

W
WAIT clause

of OPEN clause
of ALTER DATABASE statement, 6–64

of CREATE DATABASE statement,
6–378

Wait state
specifying for sequences, 6–165

WORKLOAD COLLECTION clause
of ALTER DATABASE statement, 6–64
of CREATE DATABASE statement, 6–378

Writing changes to a database with COMMIT
statement, 6–274 to 6–279

Index–27

